Python でメモ化されたフィボナッチ関数を使用すると、はるかに高速になることがわかります。
import time
beg = time.clock()
def memoize(f):
cache = {}
def decorated_function(*args):
if args in cache:
return cache[args]
else:
cache[args] = f(*args)
return cache[args]
return decorated_function
@memoize
def fib(n):
if n <=2:
return 1
return fib(n-2) + fib(n-1)
var = fib(35)
end = time.clock()
print(var)
print(end - beg)
JavaScript でも同じことができます。
function memoize( fn ) {
return function () {
var args = Array.prototype.slice.call(arguments),
hash = "",
i = args.length;
currentArg = null;
while (i--) {
currentArg = args[i];
hash += (currentArg === Object(currentArg)) ?
JSON.stringify(currentArg) : currentArg;
fn.memoize || (fn.memoize = {});
}
return (hash in fn.memoize) ? fn.memoize[hash] :
fn.memoize[hash] = fn.apply(this, args);
};
}
var beg = new Date().getTime();
function fib(n)
{
if (n <= 2)
return 1;
return fib(n-2) + fib(n-1);
}
var f = memoize(fib)(35);
var end = new Date().getTime();
console.log(f);
console.log(end - beg);
JavaScript 側でのパフォーマンスの向上はないように見えます。これは、ここに何らかのメモ化メカニズムが組み込まれていることを示している傾向があります。
クレジット : http://ujihisa.blogspot.fr/2010/11/memoized-recursive-fibonacci-in-python.html , http://addyosmani.com/blog/faster-javascript-memoization/