Pythonで約40000〜50000枚の画像を含む2つの巨大なファイルを処理しようとしています。しかし、データセットを numpy 配列に変換しようとするたびに、メモリ エラーが発生します。私は約8GBのRAMしか持っていませんが、Pythonの経験が不足しているため、私が知らないPythonライブラリを使用して、またはおそらく私のコードを最適化?この件についてご意見をお聞きしたいです。
私の画像処理コード:
from sklearn.cluster import MiniBatchKMeans
import numpy as np
import glob
import os
from PIL import Image
from sklearn.decomposition import PCA
image_dir1 = "C:/Users/Ai/Desktop/KAGA FOLDER/C/train"
image_dir2 = "C:/Users/Ai/Desktop/KAGA FOLDER/C/test1"
Standard_size = (300,200)
pca = PCA(n_components = 10)
file_open = lambda x,y: glob.glob(os.path.join(x,y))
def matrix_image(image):
"opens image and converts it to a m*n matrix"
image = Image.open(image)
print("changing size from %s to %s" % (str(image.size), str(Standard_size)))
image = image.resize(Standard_size)
image = list(image.getdata())
image = map(list,image)
image = np.array(image)
return image
def flatten_image(image):
"""
takes in a n*m numpy array and flattens it to
an array of the size (1,m*n)
"""
s = image.shape[0] * image.shape[1]
image_wide = image.reshape(1,s)
return image_wide[0]
if __name__ == "__main__":
train_images = file_open(image_dir1,"*.jpg")
test_images = file_open(image_dir2,"*.jpg")
train_set = []
test_set = []
"Loop over all images in files and modify them"
train_set = [flatten_image(matrix_image(image))for image in train_images]
test_set = [flatten_image(matrix_image(image))for image in test_images]
train_set = np.array(train_set) #This is where the Memory Error occurs
test_set = np.array(test_set)
小さな編集:私は64ビットのPythonを使用しています