2

次のようなタプルのリストに、numpy 配列のバイナリ(白黒) 画像と座標があります。

coordlist =[(110, 110), (110, 111), (110, 112), (110, 113), (110, 114), (110, 115), (110, 116), (110, 117), (110, 118), (110, 119), (110, 120), (100, 110), (101, 111), (102, 112), (103, 113), (104, 114), (105, 115), (106, 116), (107, 117), (108, 118), (109, 119), (110, 120)]

またはとして:

coordx = [110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110]
coordy = [110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120]

その座標リストの画像に「白い」ピクセルがあるかどうかを確認するにはどうすればよいですか? また、その座標リストから離れた約 3 ピクセルの範囲にある白いピクセルも確認したいと思います。

すなわち:

for i, j in coordx, coordy:
    for k in a range (k-3, k + 3)
        for l in a range (l-3, l + 3)
            #checking white pixels also for pixel near coordinates list

「どこ」機能を考えてみました。

from skimage import morphology
import numpy as np

path = 'image/a.jpg'
col = mh.imread(path)
bn0 = col[:,:,0]
bn = (bn0 < 127)
bnsk = morphology.skeletonize(bn)
bnskInt = np.array(bnsk, dtype=np.uint8)

#finding if there are white pixel in the coord list and around that in a 5 pixel range
for i in coordlist:
np.where(?)

更新します。

(128, 128, 3) の代わりに形状 (128, 128) を使用しようとしましたが、これは私のイメージの形状が (a,b) であるためです。しかし、今では白いピクセルが見つかりません! なぜこのようにして何かを見つけるのでしょうか?

    white_pixel = np.array([255, 255])
    img = np.random.randint(0, 256, (128, 128))
    print(img[150])
    print(img.shape)
    img[110, 110] = 255
    img[109, 110] = 255

    mask = np.zeros((128, 128), dtype=bool)
    mask[coordx, coordy] = 1
    #structure = np.ones((3, 3, 1))
    #mask = scipy.ndimage.morphology.binary_dilation(mask, structure)

    is_white = np.all((img * mask) == white_pixel, axis=-1)

    # This will tell you which pixels are white
    print np.where(is_white)

    # This will tell you if any pixels are white
    print np.any(is_white)

出力:

(array([], dtype=int32),)
False
4

1 に答える 1

4

更新、バイナリまたはグレースケール画像で動作するように回答を更新しました。画像強度は (R, G, B) 値ではなく単なるスカラーであり、すべての画像、マスク、および構造要素は 3 次元配列ではなく 2 次元配列であることに注意してください。の値を調整する必要がある場合がありますwhite_pixel(または、必要に応じてこのコードを変更します)。

import numpy as np
from skimage.morphology import binary_dilation
# Setup
coordx = [110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 100, 101, 102,
          103, 104, 105, 106, 107, 108, 109, 110]
coordy = [110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 110, 111, 112,
          113, 114, 115, 116, 117, 118, 119, 120]
img = np.random.random((128, 128))
img[110, 110] = 1.
img[109, 110] = 1.


# values grater than white_pixel will get detected as white pixels
white_pixel = 1

mask = np.zeros((128, 128), dtype=bool)
mask[coordx, coordy] = 1

structure = np.ones((7, 7))
mask = binary_dilation(mask, structure)

is_white = (img * mask) >= white_pixel

# This will tell you which pixels are white
print np.where(is_white)

# This will tell you if any pixels are white
print np.any(is_white)

元の答え:

どのピクセルが白numpy.whereかを知りたい場合にのみ使用する必要があります。画像にマスクを掛けて、次のように使用します。np.any

# Setup
coordx = [110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 100, 101, 102,
          103, 104, 105, 106, 107, 108, 109, 110]
coordy = [110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 110, 111, 112,
          113, 114, 115, 116, 117, 118, 119, 120]
white_pixel = np.array([255, 255, 255])
img = np.random.randint(0, 256, (128, 128, 3))
img[110, 110, :] = 255
img[109, 110, :] = 255

mask = np.zeros((128, 128, 1), dtype=bool)
mask[coordx, coordy] = 1

structure = np.ones((7, 7, 1))
mask = binary_dilation(mask, structure)

is_white = np.all((img * mask) == white_pixel, axis=-1)

# This will tell you which pixels are white
print np.where(is_white)

# This will tell you if any pixels are white
print np.any(is_white)
于 2013-10-27T17:35:46.237 に答える