1

javacvでBOWモデルを実装するアプリを開発しています。

元のコードは c++ で書かれています

ファーストクラス :

public class BOW {

  final String trainingData ="";
  final String testData="";

  int dictionarySize = 500;

  // TermCriteria tc(CV_TERMCRIT_ITER, 10, 0.001);

  int retries = 1;

  int flags = CV_KMEANS_USE_INITIAL_LABELS;

  CvTermCriteria termcrit ;

  BOWKMeansTrainer bMeansTrainer ;

  BOWImgDescriptorExtractor bDescriptorExtractor;

  FeatureDetector featureDetector;

  DescriptorExtractor descriptorExtractor;

  DescriptorMatcher descriptorMatcher;

public BOWKMeansTrainer getbMeansTrainer() {
    return bMeansTrainer;
}


public void setbMeansTrainer(BOWKMeansTrainer bMeansTrainer) {
    this.bMeansTrainer = bMeansTrainer;
}


public BOWImgDescriptorExtractor getbDescriptorExtractor() {
    return bDescriptorExtractor;
}


public void setbDescriptorExtractor(
        BOWImgDescriptorExtractor bDescriptorExtractor) {
    this.bDescriptorExtractor = bDescriptorExtractor;
}


public FeatureDetector getFeatureDetector() {
    return featureDetector;
}


public void setFeatureDetector(FeatureDetector featureDetector) {
    this.featureDetector = featureDetector;
}


public DescriptorExtractor getDescriptorExtractor() {
    return descriptorExtractor;
}


public void setDescriptorExtractor(DescriptorExtractor descriptorExtractor) {
    this.descriptorExtractor = descriptorExtractor;
}


public DescriptorMatcher getDescriptorMatcher() {
    return descriptorMatcher;
}


public void setDescriptorMatcher(DescriptorMatcher descriptorMatcher) {
    this.descriptorMatcher = descriptorMatcher;
}


public BOW() {
    super();
    try {
        featureDetector = FeatureDetector.create("SIFT");
    descriptorExtractor=DescriptorExtractor.create("SIFT");
    descriptorMatcher= DescriptorMatcher.create("FlannBased");
    termcrit = new CvTermCriteria(CV_TERMCRIT_ITER, 10, 0.001);
    bMeansTrainer = new BOWKMeansTrainer(dictionarySize, termcrit , retries, flags);
    bDescriptorExtractor = new BOWImgDescriptorExtractor( descriptorExtractor, descriptorMatcher);

    } catch (Exception e) {

        e.getStackTrace();
    }

}



 public void extractTrainingVocabulary (String  baseurl ) 
  {
    File dir = new File(baseurl);

    for (File child : dir.listFiles())
    {
        if (child.isDirectory())
        {
            System.out.println("Processing directory"+child.getAbsolutePath());

            extractTrainingVocabulary(child.getName());
        }

        else 
        {
            if (child.getName().contains(".jpg"))
            {
                System.out.println("Processing file" + child.getName());
                 final CvMat image = cvLoadImageM(child.getName());
                 if (!image.empty())
                 {

                    KeyPoint keypoints = new KeyPoint(); // a verifier 
                    featureDetector.detect(image, keypoints, null);

                    if (keypoints.isNull())
                    {
                        System.out.println("Warning: Could not find key points in image: "+

                                child.getName()
                                );
                    }

                    else 
                    {
                        CvMat featurs = new CvMat() ; // 
                        descriptorExtractor.compute(image, keypoints, featurs);


                        bMeansTrainer.add(featurs);
                    }
                 }

                 else 
                 {
                     System.out.println("Warning: Could not read image: "+ child.getName());
                 }


            }
        }
    }
  }

public void extractBOWDescriptor (String baseurl , CvMat descriptors ) 

  {
    File dir = new File(baseurl);

    for (File child : dir.listFiles())
    {
        if (child.isDirectory())
        {
            System.out.println("Processing directory"+child.getAbsolutePath());

            extractBOWDescriptor(child.getName(), descriptors);
        }


        else 
        {
            if (child.getName().contains(".jpg"))
            {
                 System.out.println("Processing file" + child.getName());

                 final CvMat image = cvLoadImageM(child.getName());

                 if (!image.empty())
                 {

                    KeyPoint keypoints = new KeyPoint(); // a verifier 
                    featureDetector.detect(image, keypoints, null);

                    if (keypoints.isNull())
                    {
                        System.out.println("Warning: Could not find key points in image: "+

                                child.getName()
                                );
                    }

                    else 
                    {
                        CvMat BoWdescriptors = new CvMat() ; // 
                        bDescriptorExtractor.compute(image, keypoints, BoWdescriptors, null, null);

                        descriptors.put(descriptors);
                   //     float label=Float.parseFloat(child.getName());
                    //  labels.put(label);

                         }
                 }

                 else 
                 {
                     System.out.println("Warning: Could not read image: "+ child.getName());
                 }

            }
        }
    }

  }

}

メインクラス:

  package pack;


public class Main {

/**
 * @param args
 */
public static void main(String[] args) {
     System.out.println("ppppppp");

    String trainingDatapath="bowdemo\\data\\train";
    String evalDatapath="bowdemo\\data\\evam";
    BOW bow = null;

    try {
                 bow = new BOW();
    } 

    catch (Exception e) {

        e.getStackTrace();
    }

    bow.extractTrainingVocabulary(trainingDatapath);

//   MatVector descriptos = bow.getbMeansTrainer().getDescriptors();

    CvMat dictionnary  = bow.getbMeansTrainer().cluster();

    bow.getbDescriptorExtractor().setVocabulary(dictionnary);


    CvMat evalData = new CvMat(bow.dictionarySize);

    bow.extractBOWDescriptor(evalDatapath, evalData);


}

}

実行:

A fatal error has been detected by the Java Runtime Environment:

EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x7350b1f2, pid=6900, tid=3984

JRE version: Java(TM) SE Runtime Environment (7.0_45-b18) (build 1.7.0_45-b18)
Java VM: Java HotSpot(TM) Client VM (24.45-b08 mixed mode, sharing windows-x86 )
Problematic frame:
C  [MSVCR90.dll+0x3b1f2]

Failed to write core dump. Minidumps are not enabled by default on client versions of Windows

An error report file with more information is saved as:
C:\Users\Desktop\workspaceJAVACV\demo\hs_err_pid6900.log

If you would like to submit a bug report, please visit:
http://bugreport.sun.com/bugreport/crash.jsp
The crash happened outside the Java Virtual Machine in native code.
See problematic frame for where to report the bug.
4

0 に答える 0