EXPLAIN ANALYZEからこれを持っています
-> Nested Loop (cost=2173.66..30075.48 rows=77 width=4)
(actual time=30.949..399.463 rows=95959 loops=1)
したがって、予想される行と実際の行にはほぼ 3 桁の違いがあり、クエリが非常に遅くなります。
default_statistics_target を 10000 に上げ、VACUUM/ANALYZE を実行して、クエリ プランナーを新しい統計で最新の状態にしました。クエリ プランナーに、より適切な結合戦略を選択させるにはどうすればよいですか?
私はpostgres 9.3.1を使用しています。私のプランナーのコスト定数はすべてデフォルトのままです。
seq_page_cost: 1 random_page_cost: 4 cpu_tuple_cost: .01 cpu_index_tuple_cost: .005 cpu_operator_cost: .0025 effective_cache_size: 128MB
enable_nested_loops = false を設定しましたが、クエリは実際にはあまり速く実行されませんでした。私は、クエリプランナーが返すと推定した行数と実際の行数に大きな不一致があると、最適ではないクエリプランになる可能性が高いという印象を受けました
クエリ プラン全体は次のようになります。
Aggregate (cost=30444.87..30444.88 rows=1 width=0) (actual time=535.077..535.077 rows=1 loops=1)
-> Nested Loop (cost=2174.08..30444.68 rows=76 width=0) (actual time=23.208..527.062 rows=95451 loops=1)
-> Nested Loop (cost=2173.66..30075.48 rows=77 width=4) (actual time=23.200..351.275 rows=95959 loops=1)
-> Hash Left Join (cost=2173.24..28013.64 rows=401 width=4) (actual time=23.188..133.224 rows=103609 loops=1)
Hash Cond: (access_rights.target_id = departments.id)
Join Filter: ((access_rights.target_type)::text = 'Department'::text)
Filter: ((((access_rights.target_type)::text = 'Company'::text) AND (access_rights.target_id = 173)) OR (((access_rights.target_type)::text = 'User'::text) AND (access_rights.target_id = 11654)) OR (((access_rights.target_type)::text = 'UserGroup'::text) AND (access_rights.target_id = 126)) OR (((access_rights.target_type)::text = 'Department'::text) AND (departments.lft <= 7) AND (departments.rgt >= 8)))
Rows Removed by Filter: 59127
-> Bitmap Heap Scan on access_rights (cost=2135.97..27236.01 rows=26221 width=14) (actual time=22.844..79.391 rows=162736 loops=1)
Recheck Cond: ((((target_type)::text = 'Company'::text) AND (target_id = 173) AND ((section)::text = 'shop'::text)) OR (((target_type)::text = 'User'::text) AND (target_id = 11654) AND ((section)::text = 'shop'::text)) OR (((target_type)::text = 'UserGroup'::text) AND (target_id = 126) AND ((section)::text = 'shop'::text)) OR ((target_type)::text = 'Department'::text))
Filter: (((section)::text = 'shop'::text) AND (((active_on IS NOT NULL) AND (active_on <= '2013-10-29'::date) AND ((inactive_on IS NULL) OR (inactive_on > '2013-10-29'::date)) AND (frozen_activation IS NULL)) OR ((frozen_activation)::text = 'active'::text)))
Rows Removed by Filter: 9294
-> BitmapOr (cost=2135.97..2135.97 rows=80823 width=0) (actual time=22.530..22.530 rows=0 loops=1)
-> Bitmap Index Scan on index_access_rights_on_tt_ti_cfc_cfv_ti_s (cost=0.00..643.10 rows=6861 width=0) (actual time=16.106..16.106 rows=96993 loops=1)
Index Cond: (((target_type)::text = 'Company'::text) AND (target_id = 173) AND ((section)::text = 'shop'::text))
-> Bitmap Index Scan on index_access_rights_on_tt_ti_cfc_cfv_ti_s (cost=0.00..4.77 rows=12 width=0) (actual time=0.033..0.033 rows=0 loops=1)
Index Cond: (((target_type)::text = 'User'::text) AND (target_id = 11654) AND ((section)::text = 'shop'::text))
-> Bitmap Index Scan on index_access_rights_on_tt_ti_cfc_cfv_ti_s (cost=0.00..11.68 rows=112 width=0) (actual time=0.238..0.238 rows=1200 loops=1)
Index Cond: (((target_type)::text = 'UserGroup'::text) AND (target_id = 126) AND ((section)::text = 'shop'::text))
-> Bitmap Index Scan on index_access_rights_on_target_type (cost=0.00..1450.21 rows=73837 width=0) (actual time=6.148..6.148 rows=73837 loops=1)
Index Cond: ((target_type)::text = 'Department'::text)
-> Hash (cost=24.34..24.34 rows=1034 width=12) (actual time=0.331..0.331 rows=1034 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 45kB
-> Seq Scan on departments (cost=0.00..24.34 rows=1034 width=12) (actual time=0.004..0.179 rows=1034 loops=1)
-> Index Scan using tickets_pkey on tickets (cost=0.42..5.13 rows=1 width=8) (actual time=0.002..0.002 rows=1 loops=103609)
Index Cond: (id = access_rights.ticket_id)
Filter: (((hold_until IS NULL) OR (hold_until <= '2013-10-29 00:00:00'::timestamp without time zone)) AND (company_id = 173))
Rows Removed by Filter: 0
-> Index Scan using events_pkey on events (cost=0.42..4.78 rows=1 width=4) (actual time=0.001..0.002 rows=1 loops=95959)
Index Cond: (id = tickets.event_id)
Filter: ((NOT activity) AND ((canceled_at IS NULL) OR (canceled_at > '2013-10-29 23:11:37.486572'::timestamp without time zone)))
Rows Removed by Filter: 0
Total runtime: 535.165 ms
17GBのRAMがあります
このクエリのポイントは、ユーザーがショップにアクセスできるチケットを持つイベントを見つけることです。アクセスはさまざまな方法で決定できます。ユーザーが特定のチケットへのアクセス権を持つ部門の一部である場合、ユーザーの部門がアクセス権を持つ部門の親である場合 (ネストされたセット lft、rgt など)。会社全体にそれらのチケットへの access_right が与えられている場合、ユーザーはアクセスできます。ユーザーは、アクセス権を持つ UserGroup の一部になることができます。ユーザーには、チケットへの個別のアクセス権を与えることができます。ユーザーの会社がチケットを所有している必要があります。チケットは「凍結」または「非アクティブ」になる可能性があり、その場合、ユーザーはアクセスできません。"active_on" > Today または "inactive_on" < Today の場合、チケットは非アクティブです。ticket.hold_until > Today の場合、チケットは利用できません
私が実行しているクエリは
EXPLAIN ANALYZE
SELECT count(*) AS count_all
FROM "events"
INNER JOIN tickets ON events.id = tickets.event_id
INNER JOIN access_rights ON access_rights.ticket_id = tickets.id
LEFT OUTER JOIN departments ON departments.id = access_rights.target_id
AND access_rights.target_type = 'Department'
WHERE ((("events"."activity" = 'f') AND (events.canceled_at IS NULL OR events.canceled_at > '2013-10-29 23:11:37.486572'))
AND ((((((access_rights.section = 'shop') AND (access_rights.target_type = 'Company'
AND access_rights.target_id = 173)) OR ((access_rights.section = 'shop')
AND (access_rights.target_type = 'User' AND access_rights.target_id = 11654)) OR ((access_rights.section = 'shop')
AND (access_rights.target_type = 'UserGroup'
AND access_rights.target_id IN ('126'))) OR ((access_rights.section = 'shop')
AND (access_rights.target_type = 'Department'
AND departments.lft <= 7 AND departments.rgt >= 8)))
AND ((access_rights.section = 'shop')
AND ((((access_rights.section = 'shop')
AND (access_rights.active_on IS NOT NULL
AND access_rights.active_on <= '2013-10-29'
AND (access_rights.inactive_on IS NULL OR access_rights.inactive_on > '2013-10-29')))
AND (access_rights.frozen_activation IS NULL)) OR ((access_rights.section = 'shop')
AND (access_rights.frozen_activation = 'active')))))
AND (tickets.hold_until IS NULL OR tickets.hold_until <= '2013-10-29'))
AND (tickets.company_id = 173)));
テーブル:
CREATE TABLE tickets (
hold_until timestamp without time zone,
event_id integer,
id integer NOT NULL
);
Indexes:
"tickets_pkey" PRIMARY KEY, btree (id)
"index_tickets_on_company_id" btree (company_id)
"index_tickets_on_created_at" btree (created_at)
"index_tickets_on_creation_id" btree (creation_id)
"index_tickets_on_event_id" btree (event_id)
"index_tickets_on_hold_until" btree (hold_until)
Foreign-key constraints:
"tickets_attendee_id_fk" FOREIGN KEY (attendee_id) REFERENCES attendees(id)
"tickets_company_id_fk" FOREIGN KEY (company_id) REFERENCES companies(id)
"tickets_event_id_fk" FOREIGN KEY (event_id) REFERENCES events(id)
CREATE TABLE events (
id integer NOT NULL,
activity boolean DEFAULT false NOT NULL
);
Indexes:
"events_pkey" PRIMARY KEY, btree (id)
"index_events_on_id_and_te_id" UNIQUE, btree (id, te_id)
"index_events_on_activity" btree (activity)
"index_events_on_canceled_at" btree (canceled_at)
"index_events_on_company_id" btree (company_id)
"index_events_on_name" btree (name)
"index_events_on_occurs_at" btree (occurs_at)
Foreign-key constraints:
"events_company_id_fk" FOREIGN KEY (company_id) REFERENCES companies(id)
CREATE TABLE departments (
id integer NOT NULL,
parent_id integer,
lft integer NOT NULL,
rgt integer NOT NULL
);
Indexes:
"departments_pkey" PRIMARY KEY, btree (id)
"index_departments_on_company_id_and_parent_id_and_name" UNIQUE, btree (company_id, parent_id, name)
"index_departments_on_company_id" btree (company_id)
"index_departments_on_lft" btree (lft)
"index_departments_on_name" btree (name)
"index_departments_on_parent_id" btree (parent_id)
"index_departments_on_rgt" btree (rgt)
Foreign-key constraints:
"departments_company_id_fk" FOREIGN KEY (company_id) REFERENCES companies(id)
CREATE TABLE access_rights (
id integer NOT NULL,
target_type character varying(255) NOT NULL,
target_id integer NOT NULL,
ticket_id integer NOT NULL,
active_on date,
visible boolean,
inactive_on date,
frozen_activation character varying(255)
);
Indexes:
"access_rights_pkey" PRIMARY KEY, btree (id)
"index_access_rights_on_tt_ti_cfc_cfv_ti_s" UNIQUE, btree (target_type, target_id, custom_field_condition, custom_field_value, ticket_id, section)
"index_access_rights_on_active_on" btree (active_on)
"index_access_rights_on_custom_field_value" btree (custom_field_value)
"index_access_rights_on_frozen_activation" btree (frozen_activation)
"index_access_rights_on_inactive_on" btree (inactive_on)
"index_access_rights_on_section" btree (section)
"index_access_rights_on_target_id" btree (target_id)
"index_access_rights_on_target_type" btree (target_type)
"index_access_rights_on_target_type_and_target_id" btree (target_type, target_id) CLUSTER
"index_access_rights_on_ticket_id" btree (ticket_id)
"index_access_rights_on_visible" btree (visible)
Foreign-key constraints:
"access_rights_ticket_id_fk" FOREIGN KEY (ticket_id) REFERENCES tickets(id)
私はそれがたくさんあることを知っています、それを見てくれてありがとう