2

私はmatplotlibを使用しており、pcolormeshの上にcontourfをプロットし、説明したように両方を同時に表示したいと考えています。コードは次のとおりです。

"""space for module inclusion"""

fig, ax = plt.subplots()
ax.pcolormesh(*arguments here*)
ax.contour(*arguments here*)
plt.show()

ただし、データを表示しようとすると、contourf のみが表示されます (pcolormesh をオーバーライドします)。これに関するアイデアはありますか?

EDIT_1:

したがって、基本的に私が使用している値は次のとおりです。

バツ:

[ 63.37480164  63.37519836  63.37559891  63.37599945  63.37639999
  63.37680054  63.37720108  63.37760162  63.37799835  63.3783989
  63.37879944  63.37919998  63.37960052  63.38000107  63.38040161
  63.38079834  63.38119888  63.38159943  63.38199997  63.38240051
  63.38280106  63.3832016   63.38359833  63.38399887  63.38439941
  63.38479996  63.3852005   63.38560104  63.38600159  63.38639832
  63.38679886  63.3871994   63.38759995  63.38800049  63.38840103
  63.38880157  63.3891983   63.38959885  63.38999939  63.39039993
  63.39080048  63.39120102  63.39160156  63.39199829  63.39239883
  63.39279938  63.39319992  63.39360046  63.39400101  63.39440155
  63.39479828  63.39519882  63.39559937  63.39599991  63.39640045
  63.39680099  63.39720154  63.39759827  63.39799881  63.39839935
  63.3987999   63.39920044  63.39960098  63.40000153  63.40039825
  63.4007988   63.40119934  63.40159988  63.40200043  63.40240097
  63.40280151  63.40319824  63.40359879  63.40399933  63.40439987
  63.40480042  63.40520096  63.4056015   63.40599823  63.40639877
  63.40679932  63.40719986  63.4076004   63.40800095  63.40840149
  63.40879822  63.40919876  63.4095993   63.40999985  63.41040039
  63.41080093  63.41120148  63.41159821  63.41199875  63.41239929
  63.41279984  63.41320038  63.41360092  63.41400146  63.41439819
  63.41479874  63.41519928  63.41559982  63.41600037  63.41640091
  63.41680145  63.41719818  63.41759872  63.41799927  63.41839981
  63.41880035  63.4192009   63.41960144  63.41999817  63.42039871
  63.42079926  63.4211998   63.42160034  63.42200089  63.42240143
  63.42279816  63.4231987   63.42359924  63.42399979  63.42440033
  63.42480087  63.42520142  63.42559814  63.42599869  63.42639923
  63.42679977  63.42720032  63.42760086  63.4280014   63.42839813
  63.42879868  63.42919922  63.42959976  63.43000031  63.43040085
  63.43080139  63.43119812  63.43159866  63.43199921  63.43239975
  63.43280029  63.43320084  63.43360138  63.43399811  63.43439865
  63.43479919  63.43519974  63.43560028  63.43600082  63.43640137
  63.4367981   63.43719864  63.43759918  63.43799973  63.43840027
  63.43880081  63.43920135  63.4396019   63.43999863  63.44039917
  63.44079971  63.44120026  63.4416008   63.44200134  63.44240189
  63.44279861  63.44319916  63.4435997   63.44400024  63.44440079
  63.44480133  63.44520187  63.4455986   63.44599915  63.44639969
  63.44680023  63.44720078  63.44760132  63.44800186  63.44839859
  63.44879913  63.44919968  63.44960022  63.45000076  63.45040131
  63.45080185  63.45119858  63.45159912  63.45199966  63.45240021
  63.45280075  63.45320129  63.45360184  63.45399857  63.45439911
  63.45479965  63.4552002   63.45560074  63.45600128  63.45640182
  63.45679855  63.4571991   63.45759964  63.45800018  63.45840073
  63.45880127  63.45920181  63.45959854  63.45999908  63.46039963
  63.46080017  63.46120071  63.46160126  63.4620018   63.46239853
  63.46279907  63.46319962  63.46360016  63.4640007   63.46440125
  63.46480179  63.46519852  63.46559906  63.4659996   63.46640015
  63.46680069  63.46720123  63.46760178  63.4679985   63.46839905
  63.46879959  63.46920013  63.46960068  63.47000122  63.47040176
  63.47079849  63.47119904  63.47159958  63.47200012  63.47240067
  63.47280121  63.47320175  63.47359848  63.47399902  63.47439957
  63.47480011  63.47520065  63.4756012   63.47600174  63.47639847
  63.47679901  63.47719955  63.4776001   63.47800064  63.47840118
  63.47880173  63.47919846  63.479599    63.47999954  63.48040009
  63.48080063  63.48120117  63.48160172  63.48199844  63.48239899
  63.48279953  63.48320007  63.48360062  63.48400116  63.4844017
  63.48479843  63.48519897  63.48559952  63.48600006  63.4864006
  63.48680115  63.48720169  63.48759842  63.48799896  63.48839951
  63.48880005  63.48920059  63.48960114  63.49000168  63.49039841
  63.49079895  63.49119949  63.49160004  63.49200058  63.49240112
  63.49280167  63.49319839  63.49359894  63.49399948  63.49440002
  63.49480057  63.49520111  63.49560165  63.49599838  63.49639893
  63.49679947  63.49720001  63.49760056  63.4980011   63.49840164
  63.49879837  63.49919891  63.49959946  63.5         63.50040054
  63.50080109  63.50120163  63.50159836  63.5019989   63.50239944
  63.50279999  63.50320053  63.50360107  63.50400162  63.50439835
  63.50479889  63.50519943  63.50559998  63.50600052  63.50640106
  63.50680161  63.50719833  63.50759888  63.50799942  63.50839996
  63.50880051  63.50920105  63.50960159  63.50999832  63.51039886
  63.51079941  63.51119995  63.51160049  63.51200104  63.51240158
  63.51279831  63.51319885  63.5135994   63.51399994  63.51440048
  63.51480103  63.51520157  63.5155983   63.51599884  63.51639938
  63.51679993  63.51720047  63.51760101  63.51800156  63.51839828
  63.51879883  63.51919937  63.51959991  63.52000046  63.520401
  63.52080154  63.52119827  63.52159882  63.52199936  63.5223999
  63.52280045  63.52320099  63.52360153  63.52399826  63.5243988
  63.52479935  63.52519989  63.52560043  63.52600098  63.52640152
  63.52679825  63.52719879  63.52759933  63.52799988  63.52840042
  63.52880096  63.52920151  63.52959824  63.52999878  63.53039932
  63.53079987  63.53120041  63.53160095  63.5320015   63.53239822
  63.53279877  63.53319931  63.53359985  63.5340004   63.53440094
  63.53480148  63.53519821  63.53559875  63.5359993   63.53639984
  63.53680038  63.53720093  63.53760147  63.5379982   63.53839874
  63.53879929  63.53919983  63.53960037  63.54000092  63.54040146
  63.54079819  63.54119873  63.54159927  63.54199982  63.54240036
  63.5428009   63.54320145  63.54359818  63.54399872  63.54439926
  63.5447998   63.54520035  63.54560089  63.54600143  63.54639816
  63.54679871  63.54719925  63.54759979  63.54800034  63.54840088
  63.54880142  63.54919815  63.54959869  63.54999924  63.55039978
  63.55080032  63.55120087  63.55160141  63.55199814  63.55239868
  63.55279922  63.55319977  63.55360031  63.55400085  63.5544014
  63.55479813  63.55519867  63.55559921  63.55599976  63.5564003
  63.55680084  63.55720139  63.55759811  63.55799866  63.5583992
  63.55879974  63.55920029  63.55960083  63.56000137  63.5603981
  63.56079865  63.56119919  63.56159973  63.56200027  63.56240082
  63.56280136  63.5632019   63.56359863  63.56399918  63.56439972
  63.56480026  63.56520081  63.56560135  63.56600189  63.56639862
  63.56679916  63.56719971  63.56760025  63.56800079  63.56840134
  63.56880188  63.56919861  63.56959915  63.56999969  63.57040024
  63.57080078  63.57120132  63.57160187  63.5719986   63.57239914
  63.57279968  63.57320023  63.57360077  63.57400131  63.57440186
  63.57479858  63.57519913  63.57559967  63.57600021  63.57640076
  63.5768013   63.57720184  63.57759857  63.57799911  63.57839966
  63.5788002   63.57920074  63.57960129  63.58000183  63.58039856
  63.5807991   63.58119965  63.58160019  63.58200073  63.58240128
  63.58280182  63.58319855  63.58359909  63.58399963  63.58440018
  63.58480072  63.58520126  63.58560181  63.58599854  63.58639908
  63.58679962  63.58720016  63.58760071  63.58800125  63.58840179
  63.58879852  63.58919907  63.58959961  63.59000015  63.5904007
  63.59080124  63.59120178  63.59159851  63.59199905  63.5923996
  63.59280014  63.59320068  63.59360123  63.59400177  63.5943985
  63.59479904  63.59519958  63.59560013  63.59600067  63.59640121
  63.59680176  63.59719849  63.59759903  63.59799957  63.59840012
  63.59880066  63.5992012   63.59960175  63.59999847  63.60039902
  63.60079956  63.6012001   63.60160065  63.60200119  63.60240173
  63.60279846  63.60319901  63.60359955  63.60400009  63.60440063
  63.60480118  63.60520172  63.60559845  63.60599899  63.60639954
  63.60680008  63.60720062  63.60760117  63.60800171  63.60839844
  63.60879898  63.60919952  63.60960007  63.61000061  63.61040115
  63.6108017   63.61119843  63.61159897  63.61199951  63.61240005
  63.6128006   63.61320114  63.61360168  63.61399841  63.61439896
  63.6147995   63.61520004  63.61560059  63.61600113  63.61640167
  63.6167984   63.61719894  63.61759949  63.61800003  63.61840057
  63.61880112  63.61920166  63.61959839  63.61999893  63.62039948
  63.62080002  63.62120056  63.6216011   63.62200165  63.62239838
  63.62279892  63.62319946  63.62360001  63.62400055  63.62440109
  63.62480164  63.62519836  63.62559891  63.62599945  63.62639999
  63.62680054  63.62720108  63.62760162  63.62799835  63.6283989
  63.62879944  63.62919998  63.62960052  63.63000107  63.63040161
  63.63079834  63.63119888  63.63159943  63.63199997  63.63240051
  63.63280106  63.6332016   63.63359833  63.63399887  63.63439941
  63.63479996  63.6352005   63.63560104  63.63600159  63.63639832
  63.63679886  63.6371994   63.63759995  63.63800049  63.63840103
  63.63880157  63.6391983   63.63959885  63.63999939  63.64039993
  63.64080048  63.64120102  63.64160156  63.64199829  63.64239883
  63.64279938  63.64319992  63.64360046  63.64400101  63.64440155
  63.64479828  63.64519882  63.64559937  63.64599991  63.64640045
  63.64680099  63.64720154  63.64759827  63.64799881  63.64839935
  63.6487999   63.64920044  63.64960098  63.65000153  63.65039825
  63.6507988   63.65119934  63.65159988  63.65200043  63.65240097
  63.65280151  63.65319824  63.65359879  63.65399933  63.65439987
  63.65480042  63.65520096  63.6556015   63.65599823  63.65639877
  63.65679932  63.65719986  63.6576004   63.65800095  63.65840149
  63.65879822  63.65919876  63.6595993   63.65999985  63.66040039
  63.66080093  63.66120148  63.66159821  63.66199875  63.66239929
  63.66279984]

よ:

[[ 2.49405336  2.49405479  2.49405622 ...,  2.49506283  2.49506426
   2.49506545]
 [ 2.50891113  2.50891256  2.50891399 ...,  2.50994205  2.50994349
   2.50994492]
 [ 2.52241206  2.52241349  2.52241492 ...,  2.52346492  2.52346635
   2.52346778]
 ..., 
 [ 3.86142349  3.8614254   3.86142731 ...,  3.86282992  3.86283183
   3.86283374]
 [ 3.87396121  3.87396312  3.87396502 ...,  3.87538362  3.87538576
   3.87538767]
 [ 3.88761282  3.88761473  3.88761663 ...,  3.8890295   3.88903141
   3.88903356]]

Z:

[[  1.17835083e+03   1.18324207e+03   1.19204639e+03 ...,  -5.34249163e+00
    5.41835642e+00   3.46183872e+00]
 [  1.25111658e+03   1.24381042e+03   1.25598743e+03 ...,   1.37508184e-01
    2.57289410e+00  -3.10967302e+00]
 [  1.31315002e+03   1.30969629e+03   1.30394031e+03 ...,   3.06716180e+00
    7.64734685e-01  -9.59618759e+00]
 ..., 
 [  3.51441078e+01   3.44107513e+01   3.44107513e+01 ...,  -5.19034863e+00
   -1.89025664e+00  -4.45699453e+00]
 [  2.77138577e+01   2.72105122e+01   2.67071648e+01 ...,  -1.48025024e+00
    5.33136606e-01  -9.76903498e-01]
 [  2.52477798e+01   2.67249184e+01   2.82020588e+01 ...,   1.36409312e-01
   -2.32875556e-01  -2.07929993e+00]]

コードは次のとおりです。

fig,ax = plt.subplots()
ax.pcolormesh(x,y,z, cmap='gist_rainbow', linewidth=0, zorder=1)
#plt.set_xlabel('Time [s]')
#plt.set_ylabel('R [m]; ECE')
#plt.view_init(90,-90)
#plt.set_axis_off()
ax.contour(z,zorder=2)
plt.show()

出力: http://www.image-upload.net/di/4T7EQ1AJ/Capture.png

別のコード:

fig,ax = plt.subplots()
#ax.pcolormesh(x,y,z, cmap='gist_rainbow', linewidth=0, zorder=1)
#plt.set_xlabel('Time [s]')
#plt.set_ylabel('R [m]; ECE')
#plt.view_init(90,-90)
#plt.set_axis_off()
print x
print "\n\n"
print y
print "\n\n"
print z
ax.contour(z,zorder=2)
plt.show()

出力: http://www.image-upload.net/di/4T7EQ1AJ/Capture.png

そして最後に、このコード

fig,ax = plt.subplots()
ax.pcolormesh(x,y,z, cmap='gist_rainbow', linewidth=0, zorder=1)
#plt.set_xlabel('Time [s]')
#plt.set_ylabel('R [m]; ECE')
#plt.view_init(90,-90)
#plt.set_axis_off()
print x
print "\n\n"
print y
print "\n\n"
print z
#ax.contour(z,zorder=2)
plt.show()

出力: http://www.image-upload.net/di/JEKL/Capture.png

私が欲しいのは、この輪郭http://www.image-upload.net/di/4T7EQ1AJ/Capture.pngの上にhttp://www.image-upload.net/di/JEKL/Capture.pngが乱雑にないことです白色の背景!:)

4

2 に答える 2

1

zorderアーティストがレンダリングされる順序をどのコントロールで制御するかを使用するだけです(どの要素が高いzorder「上」の要素で、低い要素がありますzorder) 。

fig, ax = plt.subplots()
ax.pcolormesh(..., zorder=1)
ax.contour(..., zorder=2)
plt.show()
于 2013-11-03T23:51:25.467 に答える