私はPyMC 2.xで同様のことをしました。私のあなたは時間に依存していませんでした。これが私の例です。
# we're using `some_tau` for the noise throughout the example.
# this should be replaced with something more meaningful.
some_tau = 1 / .5**2
# PRIORS
# we don't know too much about the velocity, might be pos. or neg.
vel = pm.Normal("vel", mu=0, tau=some_tau)
# MODEL
# next_state = prev_state + vel (and some gaussian noise)
# That means that each state depends on the prev_state and the vel.
# We save the states in a list.
states = [pm.Normal("s0", mu=true_positions[0], tau=some_tau)]
for i in range(1, len(true_positions)):
states.append(pm.Normal(name="s" + str(i),
mu=states[-1] + vel,
tau=some_tau))
# observation with gaussian noise
obs = pm.Normal("obs", mu=states, tau=some_tau, value=true_positions, observed=True)
RV のリストとして vel をモデル化する必要があると思います。彼らはおそらくいくつかの依存性も持っています。
元の質問は次のとおりです:
PyMC: マルコフ システムでのパラメーター推定
IPythonノートブックとしての完全な例を次に示します。