numpy は初期化の直前に配列のサイズを知る必要があるため、最適な解決策は、そのような場合の numpy ベースのコンストラクターです。悲しいことに、私の知る限り、誰もいません。
おそらく理想的ではありませんが、わずかに高速な解決策は、ゼロでnumpy配列を作成し、リスト値で埋めることです。
import numpy as np
def pad_list(lst):
inner_max_len = max(map(len, lst))
map(lambda x: x.extend([0]*(inner_max_len-len(x))), lst)
return np.array(lst)
def apply_to_zeros(lst, dtype=np.int64):
inner_max_len = max(map(len, lst))
result = np.zeros([len(lst), inner_max_len], dtype)
for i, row in enumerate(lst):
for j, val in enumerate(row):
result[i][j] = val
return result
テストケース:
>>> pad_list([[ 1, 2, 3], [2], [2, 4]])
array([[1, 2, 3],
[2, 0, 0],
[2, 4, 0]])
>>> apply_to_zeros([[ 1, 2, 3], [2], [2, 4]])
array([[1, 2, 3],
[2, 0, 0],
[2, 4, 0]])
パフォーマンス:
>>> timeit.timeit('from __main__ import pad_list as f; f([[ 1, 2, 3], [2], [2, 4]])', number = 10000)
0.3937079906463623
>>> timeit.timeit('from __main__ import apply_to_zeros as f; f([[ 1, 2, 3], [2], [2, 4]])', number = 10000)
0.1344289779663086