27

私はまだ初心者ですが、文字認識プログラムを書きたいと思っています。このプログラムはまだ準備ができていません。また、かなり編集したため、コメントが正確に一致しない場合があります。連結成分のラベル付けには 8 連結性を使用します。

from PIL import Image
import numpy as np

im = Image.open("D:\\Python26\\PYTHON-PROGRAMME\\bild_schrift.jpg")

w,h = im.size
w = int(w)
h = int(h)

#2D-Array for area
area = []
for x in range(w):
    area.append([])
    for y in range(h):
        area[x].append(2) #number 0 is white, number 1 is black

#2D-Array for letter
letter = []
for x in range(50):
    letter.append([])
    for y in range(50):
        letter[x].append(0)

#2D-Array for label
label = []
for x in range(50):
    label.append([])
    for y in range(50):
        label[x].append(0)

#image to number conversion
pix = im.load()
threshold = 200
for x in range(w):
    for y in range(h):
        aaa = pix[x, y]
        bbb = aaa[0] + aaa[1] + aaa[2] #total value
        if bbb<=threshold:
            area[x][y] = 1
        if bbb>threshold:
            area[x][y] = 0
np.set_printoptions(threshold='nan', linewidth=10)

#matrix transponation
ccc = np.array(area) 
area = ccc.T #better solution?

#find all black pixel and set temporary label numbers
i=1
for x in range(40): # width (later)
    for y in range(40): # heigth (later)
        if area[x][y]==1:
            letter[x][y]=1
            label[x][y]=i
            i += 1

#connected components labeling
for x in range(40): # width (later)
    for y in range(40): # heigth (later)
        if area[x][y]==1:
            label[x][y]=i
            #if pixel has neighbour:
            if area[x][y+1]==1:
                #pixel and neighbour get the lowest label             
                pass # tomorrows work
            if area[x+1][y]==1:
                #pixel and neighbour get the lowest label             
                pass # tomorrows work            
            #should i also compare pixel and left neighbour?

#find width of the letter
#find height of the letter
#find the middle of the letter
#middle = [width/2][height/2] #?
#divide letter into 30 parts --> 5 x 6 array

#model letter
#letter A-Z, a-z, 0-9 (maybe more)

#compare each of the 30 parts of the letter with all model letters
#make a weighting

#print(letter)

im.save("D:\\Python26\\PYTHON-PROGRAMME\\bild2.jpg")
print('done')
4

4 に答える 4

34

OCR は確かに簡単な作業ではありません。そのため、テキスト CAPTCHA は引き続き機能します :)

パターン認識ではなく文字抽出についてのみ説明すると、文字を分離するために使用している手法はConnected Component Labelingと呼ばれます。これを行うためのより効率的な方法を求めているので、この記事で説明されている 2 パス アルゴリズムを実装してみてください。別の説明は、ブロブ抽出の記事にあります。

EDIT:私が提案したアルゴリズムの実装は次のとおりです。

import sys
from PIL import Image, ImageDraw

class Region():
    def __init__(self, x, y):
        self._pixels = [(x, y)]
        self._min_x = x
        self._max_x = x
        self._min_y = y
        self._max_y = y

    def add(self, x, y):
        self._pixels.append((x, y))
        self._min_x = min(self._min_x, x)
        self._max_x = max(self._max_x, x)
        self._min_y = min(self._min_y, y)
        self._max_y = max(self._max_y, y)

    def box(self):
        return [(self._min_x, self._min_y), (self._max_x, self._max_y)]

def find_regions(im):
    width, height  = im.size
    regions = {}
    pixel_region = [[0 for y in range(height)] for x in range(width)]
    equivalences = {}
    n_regions = 0
    #first pass. find regions.
    for x in xrange(width):
        for y in xrange(height):
            #look for a black pixel
            if im.getpixel((x, y)) == (0, 0, 0, 255): #BLACK
                # get the region number from north or west
                # or create new region
                region_n = pixel_region[x-1][y] if x > 0 else 0
                region_w = pixel_region[x][y-1] if y > 0 else 0

                max_region = max(region_n, region_w)

                if max_region > 0:
                    #a neighbour already has a region
                    #new region is the smallest > 0
                    new_region = min(filter(lambda i: i > 0, (region_n, region_w)))
                    #update equivalences
                    if max_region > new_region:
                        if max_region in equivalences:
                            equivalences[max_region].add(new_region)
                        else:
                            equivalences[max_region] = set((new_region, ))
                else:
                    n_regions += 1
                    new_region = n_regions

                pixel_region[x][y] = new_region

    #Scan image again, assigning all equivalent regions the same region value.
    for x in xrange(width):
        for y in xrange(height):
                r = pixel_region[x][y]
                if r > 0:
                    while r in equivalences:
                        r = min(equivalences[r])

                    if not r in regions:
                        regions[r] = Region(x, y)
                    else:
                        regions[r].add(x, y)

    return list(regions.itervalues())

def main():
    im = Image.open(r"c:\users\personal\py\ocr\test.png")
    regions = find_regions(im)
    draw = ImageDraw.Draw(im)
    for r in regions:
        draw.rectangle(r.box(), outline=(255, 0, 0))
    del draw 
    #im.show()
    output = file("output.png", "wb")
    im.save(output)
    output.close()

if __name__ == "__main__":
    main()

100% 完璧というわけではありませんが、これは学習目的でのみ行っているため、出発点としては適切かもしれません。各キャラクターの境界ボックスを使用すると、他の人がここで提案したように、ニューラル ネットワークを使用できるようになりました。

于 2010-01-02T08:34:23.827 に答える
7

OCRは非常に難しいです。CGでも、事前にフォントやフォントサイズが分からないと結構大変です。文字を正確に一致させているとしても、それを「初心者」のプログラミング プロジェクトとは呼びません。それはかなり微妙です。

スキャンした文字や手書きの文字を認識したい場合は、さらに困難です。高度な数学、アルゴリズム、および機械学習を使用する必要があります。このトピックについてはかなりの数の本と何千もの記事が書かれているので、一からやり直す必要はありません。

あなたの努力には敬意を表しますが、まだ実際の困難に直面するほどには進んでいないと思います。これまでのところ、ピクセルをランダムに探索し、ある配列から別の配列にコピーしているだけです。実際にはまだ比較を行っていないため、「ランダム ウォーク」の目的がわかりません。

  • なぜランダム?ランダム化されたアルゴリズムを正しく記述することは非常に困難です。最初に決定論的アルゴリズムから始めることをお勧めします。
  • あるアレイから別のアレイにコピーするのはなぜですか? 単純に比較してみませんか?

比較すると、画像が「プロトタイプ」とまったく同じではないという事実に対処する必要があり、それをどのように処理するかは明確ではありません.

ただし、これまでに作成したコードに基づいて、アイデアがあります。画像内の「迷路」を通り抜けるプログラムを作成してみてください。入力は、画像に開始ピクセルとゴール ピクセルを加えたものになります。出力は、スタートからゴールまでの迷路を通るパスです。これは、OCR よりもはるかに簡単な問題です。迷路を解くのは、コンピューターが得意とする分野ですが、それでも楽しくてやりがいがあります。

于 2010-01-02T07:52:32.737 に答える
5

最近のほとんどの OCR アルゴリズムは、ニューラル ネットワーク アルゴリズムに基づいています。 ホップフィールド ネットワークは、開始するのに適した場所です。ここで Cで利用可能な Hopfield Model に基づいて、私はあなたが説明したものと同様の非常に基本的な画像認識アルゴリズムを python で構築しました。ここに完全なソースを掲載しました。これはおもちゃのプロジェクトであり、実際の OCR には適していませんが、正しい方向に始めることができます。

ホップフィールド モデルは、一連のビットマップ イメージを格納および呼び出すための自動連想メモリとして使用されます。画像は、対応する重み行列を計算することによって保存されます。その後、任意の構成から開始して、メモリは、ハミング距離に関して開始構成に最も近い保存された画像に正確に落ち着きます。したがって、保存された画像の不完全または破損したバージョンが与えられた場合、ネットワークは対応する元の画像を呼び出すことができます。

例を示す Java アプレットは、ここにあります。ネットワークは、数字 0 ~ 9 のサンプル入力を使用してトレーニングされます。右側のボックスに描画し、[テスト] をクリックして、ネットワークからの結果を確認します。

数学的な表記法に惑わされないでください。ソース コードにたどり着けば、アルゴリズムは簡単です。

于 2010-01-03T03:29:48.720 に答える
4

OCRは非常に難しいです!OCR を試みるために使用するアプローチは、何を達成しようとしているのか (手書きの認識、コンピューターで生成されたテキストの読み取りなど) に基づいています。

ただし、開始するには、Neural Networks と OCR を読んでください。この件に関するいくつかのジャンプライト記事を次に示します。

http://www.codeproject.com/KB/cs/neural_network_ocr.aspx

http://www.codeproject.com/KB/dotnet/simple_ocr.aspx

お気に入りの検索エンジンを使用して、情報を見つけてください。

楽しむ!

于 2010-01-02T08:03:12.000 に答える