キャリブレーションされた(固有パラメータ)カメラがあります。オブジェクトからステレオ写真を撮り、それらを再投影プロセスで使用して、オブジェクトの 3D 情報を見つけます。
そのために、まず基本行列を計算しました。次に、Essential マトリックスを取得し、そこから、Rotation マトリックスと Translation ベクトル、およびその他の必要な情報を取得します。
問題は、異なるパラメーターを使用すると、非常に異なる結果が得られることです。Fundamental マトリックスが同じステレオ イメージに対して異なる可能性があることはわかっていますが、同じ Rotation マトリックスと Translation ベクトルを持つことを期待しています。ただし、パラメーターが異なると (たとえば、一致した特徴の数)、異なるマトリックスが生成されます。私は何かが恋しいですか?同じステレオ画像が (かなり) 同じ回転、平行移動、および再投影行列を提供する必要があるというのは正しいですか?
これが私のコードです。任意の助けをいただければ幸いです。ありがとう!
Mat img_1 = imread( "images/box01-edited.jpg", CV_LOAD_IMAGE_GRAYSCALE );
Mat img_2 = imread( "images/box02-edited.jpg", CV_LOAD_IMAGE_GRAYSCALE );
if( !img_1.data || !img_2.data )
{ return -1; }
//-- Step 1: Detect the keypoints using SURF Detector
int minHessian = 1000;
SurfFeatureDetector detector( minHessian );
std::vector<KeyPoint> keypoints_1, keypoints_2;
detector.detect( img_1, keypoints_1 );
detector.detect( img_2, keypoints_2 );
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_1, descriptors_2;
extractor.compute( img_1, keypoints_1, descriptors_1 );
extractor.compute( img_2, keypoints_2, descriptors_2 );
//-- Step 3: Matching descriptor vectors with a brute force matcher
BFMatcher matcher(NORM_L1, true);
std::vector< DMatch > matches;
matcher.match( descriptors_1, descriptors_2, matches );
//-- Draw matches
Mat img_matches;
drawMatches( img_1, keypoints_1, img_2, keypoints_2, matches, img_matches );
//-- Show detected matches
namedWindow( "Matches", CV_WINDOW_NORMAL );
imshow("Matches", img_matches );
waitKey(0);
//-- Step 4: calculate Fundamental Matrix
vector<Point2f>imgpts1,imgpts2;
for( unsigned int i = 0; i<matches.size(); i++ )
{
// queryIdx is the "left" image
imgpts1.push_back(keypoints_1[matches[i].queryIdx].pt);
// trainIdx is the "right" image
imgpts2.push_back(keypoints_2[matches[i].trainIdx].pt);
}
Mat F = findFundamentalMat (imgpts1, imgpts2, FM_RANSAC, 0.1, 0.99);
//-- Step 5: calculate Essential Matrix
double data[] = {1189.46 , 0.0, 805.49,
0.0, 1191.78, 597.44,
0.0, 0.0, 1.0};//Camera Matrix
Mat K(3, 3, CV_64F, data);
Mat_<double> E = K.t() * F * K; //according to HZ (9.12)
//-- Step 6: calculate Rotation Matrix and Translation Vector
Matx34d P;
Matx34d P1;
//decompose E to P' , HZ (9.19)
SVD svd(E,SVD::MODIFY_A);
Mat svd_u = svd.u;
Mat svd_vt = svd.vt;
Mat svd_w = svd.w;
Matx33d W(0,-1,0,1,0,0,0,0,1);//HZ 9.13
Mat_<double> R = svd_u * Mat(W) * svd_vt; //HZ 9.19
Mat_<double> t = svd_u.col(2); //u3
if (!CheckCoherentRotation (R)) {
std::cout<<"resulting rotation is not coherent\n";
P1 = 0;
return 0;
}
P1 = Matx34d(R(0,0),R(0,1),R(0,2),t(0),
R(1,0),R(1,1),R(1,2),t(1),
R(2,0),R(2,1),R(2,2),t(2));
//-- Step 7: Reprojection Matrix and rectification data
Mat R1, R2, P1_, P2_, Q;
Rect validRoi[2];
double dist[] = { -0.03432, 0.05332, -0.00347, 0.00106, 0.00000};
Mat D(1, 5, CV_64F, dist);
stereoRectify(K, D, K, D, img_1.size(), R, t, R1, R2, P1_, P2_, Q, CV_CALIB_ZERO_DISPARITY, 1, img_1.size(), &validRoi[0], &validRoi[1] );