6

私はPythonが初めてです。データセットがあり、numPy/sciPy を使用して将来のデータ ポイントを予測/推定しようとしています。現在のデータに適合する数学関数 (サイン関数など) を考え出す簡単な方法はありますか?その関数に新しい値を渡して予測を取得できますか?

これが私が持っているものですが、私が望むことをしているとは思いません:

import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

def main():

    y = [8.3, 8.3, 8.3, 8.3, 7.2, 7.8, 7.8, 8.3, 9.4, 10.6, 10.0, 10.6, 11.1, 12.8,
         12.8, 12.8, 11.7, 10.6, 10.6, 10.0, 10.0, 8.9, 8.9, 8.3, 7.2, 6.7, 6.7, 6.7,
         7.2, 8.3, 7.2, 10.6, 11.1, 11.7, 12.8, 13.3, 15.0, 15.6, 13.3, 15.0, 13.3,
         11.7, 11.1, 10.0, 10.6, 9.4, 8.9, 8.3, 8.9, 6.7, 6.7, 6.0, 6.1, 8.3, 8.3,
         10.6, 11.1, 11.1, 11.7, 12.2, 13.3, 14.4, 16.7, 14.4, 13.3, 12.2, 11.7,
         11.1, 10.0, 8.3, 7.8, 7.2, 8.0, 6.7, 7.2, 7.2, 7.8, 10.0, 12.2, 12.8,
         12.8, 13.9, 15.0, 16.7, 16.7, 16.7, 15.6, 13.9, 12.8, 12.2, 10.6, 9.0,
         8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 10.0, 10.6, 11.1, 12.0, 11.7,
         11.1, 13.0, 13.3, 13.0, 11.1, 10.6, 10.6, 10.0, 10.0, 10.0, 9.4, 9.4,
         8.9, 8.3, 9.0, 8.9, 9.4, 9.0, 9.4, 10.6, 11.7, 11.1, 11.7, 12.8, 12.8,
         12.8, 13.0, 11.7, 10.6, 10.0, 10.0, 8.9, 9.4, 7.8, 7.8, 8.3, 7.8, 8.9,
         8.9, 8.9, 9.4, 10.0, 10.0, 10.6, 11.0, 11.1, 11.1, 12.2, 10.6, 10.0, 8.9,
         8.9, 9.0, 8.9, 8.3, 8.9, 8.9, 9.4, 9.4, 9.4, 8.9, 8.9, 8.9, 9.4, 10.0,
         11.1, 11.7, 11.7, 11.7, 11.7, 12.0, 11.7, 11.7, 12.0, 11.7, 11.0, 10.6,
         9.4, 10.0, 8.3, 8.0, 7.2, 5.6, 6.1, 5.6, 6.1, 6.7, 8.0, 10.0, 10.6, 11.1,
         13.3, 12.8, 12.8, 12.2, 11.1, 10.0, 10.0, 10.0, 10.0, 9.4, 8.3]    
    x = np.array(np.arange(len(y)))        

    fitting_parameters, covariance = curve_fit(fit, x, y)
    a = fitting_parameters[0]
    b = fitting_parameters[1]
    c = fitting_parameters[2]
    d = fitting_parameters[3]

    for x_predict in range(len(y) + 1, len(y) + 24):
        next_x = x_predict
        next_y = fit(next_x, a, b, c, d)

        print("next_x: " + str(next_x))
        print("next_y: " + str(next_y))
        y.append(next_y)

    plt.plot(y)
    plt.show()

def fit(x, a, b, c, d):
    return a*np.sin(b*x + c) + d

データをcurve_fitおよびunivariatesplineしようとしましたが、それは現在のデータにのみ適合し、ポイントを滑らかにします。私が言いたいのは、これらのツールはデータを「フィッティング」しているだけで、将来のポイントを取得するために使用できる機能を実際に提供していないということです。

私のデータは周期的であり、サインとコサインの合計として記述できるように見えたので、離散フーリエ変換を使用できると思いました。しかし、時間ドメインから周波数ドメインを取得すると、時間ドメインの将来の期間とポイントを予測するために「外挿」する方法に行き詰まりました。

import numpy as np
import matplotlib.pyplot as plt

mydata = [8.3, 8.3, 8.3, 8.3, 7.2, 7.8, 7.8, 8.3, 9.4, 10.6, 10.0, 10.6, 11.1, 12.8,
         12.8, 12.8, 11.7, 10.6, 10.6, 10.0, 10.0, 8.9, 8.9, 8.3, 7.2, 6.7, 6.7, 6.7,
         7.2, 8.3, 7.2, 10.6, 11.1, 11.7, 12.8, 13.3, 15.0, 15.6, 13.3, 15.0, 13.3,
         11.7, 11.1, 10.0, 10.6, 9.4, 8.9, 8.3, 8.9, 6.7, 6.7, 6.0, 6.1, 8.3, 8.3,
         10.6, 11.1, 11.1, 11.7, 12.2, 13.3, 14.4, 16.7, 14.4, 13.3, 12.2, 11.7,
         11.1, 10.0, 8.3, 7.8, 7.2, 8.0, 6.7, 7.2, 7.2, 7.8, 10.0, 12.2, 12.8,
         12.8, 13.9, 15.0, 16.7, 16.7, 16.7, 15.6, 13.9, 12.8, 12.2, 10.6, 9.0,
         8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 10.0, 10.6, 11.1, 12.0, 11.7,
         11.1, 13.0, 13.3, 13.0, 11.1, 10.6, 10.6, 10.0, 10.0, 10.0, 9.4, 9.4,
         8.9, 8.3, 9.0, 8.9, 9.4, 9.0, 9.4, 10.6, 11.7, 11.1, 11.7, 12.8, 12.8,
         12.8, 13.0, 11.7, 10.6, 10.0, 10.0, 8.9, 9.4, 7.8, 7.8, 8.3, 7.8, 8.9,
         8.9, 8.9, 9.4, 10.0, 10.0, 10.6, 11.0, 11.1, 11.1, 12.2, 10.6, 10.0, 8.9,
         8.9, 9.0, 8.9, 8.3, 8.9, 8.9, 9.4, 9.4, 9.4, 8.9, 8.9, 8.9, 9.4, 10.0,
         11.1, 11.7, 11.7, 11.7, 11.7, 12.0, 11.7, 11.7, 12.0, 11.7, 11.0, 10.6,
         9.4, 10.0, 8.3, 8.0, 7.2, 5.6, 6.1, 5.6, 6.1, 6.7, 8.0, 10.0, 10.6, 11.1,
         13.3, 12.8, 12.8, 12.2, 11.1, 10.0, 10.0, 10.0, 10.0, 9.4, 8.3] 

sp = np.fft.rfft(mydata)
freq = np.fft.rfftfreq(len(mydata), d= 1.0)

plt.subplot(211)
plt.plot(mydata)
plt.subplot(212)
plt.plot(freq, sp, 'r')
plt.show()

外挿が危険で信頼できない場合があることは理解していますが、このプロジェクトの目的のために、グラフ化できる機能する予測関数を取得しようとしています。

よろしくお願いいたします。

4

1 に答える 1

4

周期的なデータをフーリエ級数として表すことで補間する方法を次に示します。フーリエ級数で使用される係数は、離散 FFT を実行することによって得られます。

私はこれをお勧めしません-以下でわかるように、補間は直感的に非常に良いと見なすものではありません-しかし、コメントで言及したので、フォローしていくつかのコードを示します:)

import numpy as np
import matplotlib.pyplot as plt
import scipy.fftpack as fftpack

def fft_inverse(Yhat, x):
    """Based on http://stackoverflow.com/a/4452499/190597 (mtrw)"""
    Yhat = np.asarray(Yhat)
    x = np.asarray(x).reshape(-1, 1)
    N = len(Yhat)
    k = np.arange(N)
    total = Yhat * np.exp(1j * x * k * 2 * np.pi / N)
    return np.real(total.sum(axis=1))/N

mydata = [8.3, 8.3, 8.3, 8.3, 7.2, 7.8, 7.8, 8.3, 9.4, 10.6, 10.0, 10.6, 11.1, 12.8,
         12.8, 12.8, 11.7, 10.6, 10.6, 10.0, 10.0, 8.9, 8.9, 8.3, 7.2, 6.7, 6.7, 6.7,
         7.2, 8.3, 7.2, 10.6, 11.1, 11.7, 12.8, 13.3, 15.0, 15.6, 13.3, 15.0, 13.3,
         11.7, 11.1, 10.0, 10.6, 9.4, 8.9, 8.3, 8.9, 6.7, 6.7, 6.0, 6.1, 8.3, 8.3,
         10.6, 11.1, 11.1, 11.7, 12.2, 13.3, 14.4, 16.7, 14.4, 13.3, 12.2, 11.7,
         11.1, 10.0, 8.3, 7.8, 7.2, 8.0, 6.7, 7.2, 7.2, 7.8, 10.0, 12.2, 12.8,
         12.8, 13.9, 15.0, 16.7, 16.7, 16.7, 15.6, 13.9, 12.8, 12.2, 10.6, 9.0,
         8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 10.0, 10.6, 11.1, 12.0, 11.7,
         11.1, 13.0, 13.3, 13.0, 11.1, 10.6, 10.6, 10.0, 10.0, 10.0, 9.4, 9.4,
         8.9, 8.3, 9.0, 8.9, 9.4, 9.0, 9.4, 10.6, 11.7, 11.1, 11.7, 12.8, 12.8,
         12.8, 13.0, 11.7, 10.6, 10.0, 10.0, 8.9, 9.4, 7.8, 7.8, 8.3, 7.8, 8.9,
         8.9, 8.9, 9.4, 10.0, 10.0, 10.6, 11.0, 11.1, 11.1, 12.2, 10.6, 10.0, 8.9,
         8.9, 9.0, 8.9, 8.3, 8.9, 8.9, 9.4, 9.4, 9.4, 8.9, 8.9, 8.9, 9.4, 10.0,
         11.1, 11.7, 11.7, 11.7, 11.7, 12.0, 11.7, 11.7, 12.0, 11.7, 11.0, 10.6,
         9.4, 10.0, 8.3, 8.0, 7.2, 5.6, 6.1, 5.6, 6.1, 6.7, 8.0, 10.0, 10.6, 11.1,
         13.3, 12.8, 12.8, 12.2, 11.1, 10.0, 10.0, 10.0, 10.0, 9.4, 8.3] 

Yhat = fftpack.fft(mydata)

fig, ax = plt.subplots(nrows=2, sharex=True)
xs = np.arange(len(mydata))
ax[0].plot(xs, mydata)

new_xs = np.linspace(xs.min(), xs.max(), len(mydata)*1.5)
new_ys = fft_inverse(Yhat, new_xs)
ax[1].plot(new_xs, new_ys)

plt.xlim(xs.min(), xs.max())
plt.show()

ここに画像の説明を入力


scipy.optimizeモデル関数に適合するパラメーターを見つけるために使用する方法を次に示します。これを使用して、任意の x 座標で補間することができます。シングルを使用した場合の適合sin性は依然としてかなりひどいですが、scipy.optimizeとにかく使用方法を示すためにコードを投稿します。

import numpy as np
import matplotlib.pyplot as plt
import scipy.optimize as optimize

mydata = np.array(
    [8.3, 8.3, 8.3, 8.3, 7.2, 7.8, 7.8, 8.3, 9.4, 10.6, 10.0, 10.6, 11.1, 12.8,
     12.8, 12.8, 11.7, 10.6, 10.6, 10.0, 10.0, 8.9, 8.9, 8.3, 7.2, 6.7, 6.7, 6.7,
     7.2, 8.3, 7.2, 10.6, 11.1, 11.7, 12.8, 13.3, 15.0, 15.6, 13.3, 15.0, 13.3,
     11.7, 11.1, 10.0, 10.6, 9.4, 8.9, 8.3, 8.9, 6.7, 6.7, 6.0, 6.1, 8.3, 8.3,
     10.6, 11.1, 11.1, 11.7, 12.2, 13.3, 14.4, 16.7, 14.4, 13.3, 12.2, 11.7,
     11.1, 10.0, 8.3, 7.8, 7.2, 8.0, 6.7, 7.2, 7.2, 7.8, 10.0, 12.2, 12.8,
     12.8, 13.9, 15.0, 16.7, 16.7, 16.7, 15.6, 13.9, 12.8, 12.2, 10.6, 9.0,
     8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 8.9, 10.0, 10.6, 11.1, 12.0, 11.7,
     11.1, 13.0, 13.3, 13.0, 11.1, 10.6, 10.6, 10.0, 10.0, 10.0, 9.4, 9.4,
     8.9, 8.3, 9.0, 8.9, 9.4, 9.0, 9.4, 10.6, 11.7, 11.1, 11.7, 12.8, 12.8,
     12.8, 13.0, 11.7, 10.6, 10.0, 10.0, 8.9, 9.4, 7.8, 7.8, 8.3, 7.8, 8.9,
     8.9, 8.9, 9.4, 10.0, 10.0, 10.6, 11.0, 11.1, 11.1, 12.2, 10.6, 10.0, 8.9,
     8.9, 9.0, 8.9, 8.3, 8.9, 8.9, 9.4, 9.4, 9.4, 8.9, 8.9, 8.9, 9.4, 10.0,
     11.1, 11.7, 11.7, 11.7, 11.7, 12.0, 11.7, 11.7, 12.0, 11.7, 11.0, 10.6,
     9.4, 10.0, 8.3, 8.0, 7.2, 5.6, 6.1, 5.6, 6.1, 6.7, 8.0, 10.0, 10.6, 11.1,
     13.3, 12.8, 12.8, 12.2, 11.1, 10.0, 10.0, 10.0, 10.0, 9.4, 8.3]) 


def fit(x, a, b, c, d):
    return a*np.sin(b*x + c) + d

xs = np.linspace(0, 2*np.pi, len(mydata))

guess = (mydata.ptp()/2, 10, 0, mydata.mean())
fitting_parameters, covariance = optimize.curve_fit(fit, xs, mydata, p0=guess)
a, b, c, d = fitting_parameters
print(a, b, c, d)

fig, ax = plt.subplots(nrows=2, sharex=True)
ax[0].plot(xs, mydata)

new_xs = np.linspace(xs.min(), xs.max(), len(mydata)*1.5)
new_ys = fit(new_xs, a, b, c, d)
ax[1].plot(new_xs, new_ys)

plt.xlim(xs.min(), xs.max())
plt.show()

ここに画像の説明を入力

( の代わりに) より良いモデル関数を選択することで、適合を改善できる場合がありますfit。何を選択するかは、問題領域のアプリオリな知識に導かれた創造性と直感の問題です。どちらが優れているかは、適合の良さだけでなく、モデルをどれだけ単純にするか複雑にするか、および/または新しいデータセットに適用したときにどれだけの予測力が得られるかに依存します。

于 2013-12-29T10:22:07.797 に答える