キャレットパッケージを使用して再帰的な機能選択を適用しようとしています。私が必要としているのは、ref がパフォーマンスの尺度として AUC を使用することです。1か月間グーグルした後、プロセスを機能させることができません。これが私が使用したコードです:
library(caret)
library(doMC)
registerDoMC(cores = 4)
data(mdrr)
subsets <- c(1:10)
ctrl <- rfeControl(functions=caretFuncs,
method = "cv",
repeats =5, number = 10,
returnResamp="final", verbose = TRUE)
trainctrl <- trainControl(classProbs= TRUE)
caretFuncs$summary <- twoClassSummary
set.seed(326)
rf.profileROC.Radial <- rfe(mdrrDescr, mdrrClass, sizes=subsets,
rfeControl=ctrl,
method="svmRadial",
metric="ROC",
trControl=trainctrl)
このスクリプトを実行すると、次の結果が得られます。
Recursive feature selection
Outer resampling method: Cross-Validation (10 fold)
Resampling performance over subset size:
Variables Accuracy Kappa AccuracySD KappaSD Selected
1 0.7501 0.4796 0.04324 0.09491
2 0.7671 0.5168 0.05274 0.11037
3 0.7671 0.5167 0.04294 0.09043
4 0.7728 0.5289 0.04439 0.09290
5 0.8012 0.5856 0.04144 0.08798
6 0.8049 0.5926 0.02871 0.06133
7 0.8049 0.5925 0.03458 0.07450
8 0.8124 0.6090 0.03444 0.07361
9 0.8181 0.6204 0.03135 0.06758 *
10 0.8069 0.5971 0.04234 0.09166
342 0.8106 0.6042 0.04701 0.10326
The top 5 variables (out of 9):
nC, X3v, Sp, X2v, X1v
このプロセスでは、パフォーマンスの尺度として常に精度が使用されます。発生する別の問題は、次を使用して取得したモデルから予測を取得しようとするときです。
predictions <- predict(rf.profileROC.Radial$fit,mdrrDescr)
次のメッセージが表示されます
In predictionFunction(method, modelFit, tempX, custom = models[[i]]$control$custom$prediction) :
kernlab class prediction calculations failed; returning NAs
モデルから何らかの予測を得ることが不可能であることが判明しました。
で得た情報はこちらsessionInfo()
R version 3.0.2 (2013-09-25)
Platform: x86_64-pc-linux-gnu (64-bit)
locale:
[1] LC_CTYPE=es_ES.UTF-8 LC_NUMERIC=C LC_TIME=es_ES.UTF-8
[4] LC_COLLATE=es_ES.UTF-8 LC_MONETARY=es_ES.UTF-8 LC_MESSAGES=es_ES.UTF-8
[7] LC_PAPER=es_ES.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=es_ES.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid parallel splines stats graphics grDevices utils datasets methods base
other attached packages:
[1] e1071_1.6-2 class_7.3-9 pROC_1.6.0.1 doMC_1.3.2 iterators_1.0.6 foreach_1.4.1
[7] caret_6.0-21 ggplot2_0.9.3.1 lattice_0.20-24 kernlab_0.9-19
loaded via a namespace (and not attached):
[1] car_2.0-19 codetools_0.2-8 colorspace_1.2-4 compiler_3.0.2 dichromat_2.0-0
[6] digest_0.6.4 gtable_0.1.2 labeling_0.2 MASS_7.3-29 munsell_0.4.2
[11] nnet_7.3-7 plyr_1.8 proto_0.3-10 RColorBrewer_1.0-5 Rcpp_0.10.6
[16] reshape2_1.2.2 scales_0.2.3 stringr_0.6.2 tools_3.0.2