Eviews で回帰を実行すると、次のような統計パネルが表示されます。
Rの回帰に関するこれらの統計のすべて/ほとんどを1つのリストでも取得できるRの方法はありますか?
を参照summary
してください。回帰オブジェクトのほとんどのクラスの要約が生成されます。
たとえば、次からhelp(glm)
:
> clotting <- data.frame(
+ u = c(5,10,15,20,30,40,60,80,100),
+ lot1 = c(118,58,42,35,27,25,21,19,18),
+ lot2 = c(69,35,26,21,18,16,13,12,12))
> summary(glm(lot1 ~ log(u), data = clotting, family = Gamma))
Call:
glm(formula = lot1 ~ log(u), family = Gamma, data = clotting)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.04008 -0.03756 -0.02637 0.02905 0.08641
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0165544 0.0009275 -17.85 4.28e-07 ***
log(u) 0.0153431 0.0004150 36.98 2.75e-09 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Gamma family taken to be 0.002446059)
Null deviance: 3.51283 on 8 degrees of freedom
Residual deviance: 0.01673 on 7 degrees of freedom
AIC: 37.99
Number of Fisher Scoring iterations: 3
GUI プログラムに対する R の大きな利点は、一般に、関数からの出力が利用可能であることです。したがって、次のことができます。
> s = summary(glm(lot1 ~ log(u), data = clotting, family = Gamma))
> s$coefficients[1,]
Estimate Std. Error t value Pr(>|t|)
-1.655438e-02 9.275466e-04 -1.784749e+01 4.279149e-07
> s$cov.scaled
(Intercept) log(u)
(Intercept) 8.603427e-07 -3.606457e-07
log(u) -3.606457e-07 1.721915e-07
t と p およびパラメーターのすべて、またはスケーリングされた共分散行列を取得します。ただし、概要メソッドのドキュメントを常に読んで、自分が得ていると思うものを得ていることを確認してください。返されたオブジェクト内のものは、変換されたスケールで計算され、オブジェクトが印刷されるときに変換されていないスケールで表示される場合があります。
ただし、例として示したように見えるのはARIMAモデルであり、Rのオブジェクトには優れたsummary
機能がないことに注意してください:arima
> m = arima(lh, order = c(1,0,1))
> summary(m)
Length Class Mode
coef 3 -none- numeric
sigma2 1 -none- numeric
var.coef 9 -none- numeric
mask 3 -none- logical
loglik 1 -none- numeric
aic 1 -none- numeric
arma 7 -none- numeric
residuals 48 ts numeric
call 3 -none- call
series 1 -none- character
code 1 -none- numeric
n.cond 1 -none- numeric
model 10 -none- list
これは、これらの要素を含むリスト オブジェクトのデフォルトの要約です。単純に印刷するだけで、次のことが得られます。
> m
Call:
arima(x = lh, order = c(1, 0, 1))
Coefficients:
ar1 ma1 intercept
0.4522 0.1982 2.4101
s.e. 0.1769 0.1705 0.1358
sigma^2 estimated as 0.1923: log likelihood = -28.76, aic = 65.52
m が で生成されたlm
モデルの場合は、単純に次summary(m)
のようにします。これらのモデルの統計と数値をすべて取得します。