135

作業するとき、すべての行に適用する必要があるスカラー関数plyrに使用すると便利であることがよくあります。adply

例えば

data(iris)
library(plyr)
head(
     adply(iris, 1, transform , Max.Len= max(Sepal.Length,Petal.Length))
    )
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species Max.Len
1          5.1         3.5          1.4         0.2  setosa     5.1
2          4.9         3.0          1.4         0.2  setosa     4.9
3          4.7         3.2          1.3         0.2  setosa     4.7
4          4.6         3.1          1.5         0.2  setosa     4.6
5          5.0         3.6          1.4         0.2  setosa     5.0
6          5.4         3.9          1.7         0.4  setosa     5.4

今はdplyrもっと使っていますが、これを行うためのきちんとした/自然な方法があるかどうか疑問に思っていますか? これは私が望むものではないので:

library(dplyr)
head(
     mutate(iris, Max.Len= max(Sepal.Length,Petal.Length))
    )
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species Max.Len
1          5.1         3.5          1.4         0.2  setosa     7.9
2          4.9         3.0          1.4         0.2  setosa     7.9
3          4.7         3.2          1.3         0.2  setosa     7.9
4          4.6         3.1          1.5         0.2  setosa     7.9
5          5.0         3.6          1.4         0.2  setosa     7.9
6          5.4         3.9          1.7         0.4  setosa     7.9
4

8 に答える 8

23

慣用的なアプローチは、適切にベクトル化された関数を作成することです。

Rこれはここで適切ですが、任意の関数のベクトル化された任意のバージョンを作成できるようにするためのラッパーとしてpmaxも提供します。Vectorizemapply

library(dplyr)
# use base R pmax (vectorized in C)
iris %>% mutate(max.len = pmax(Sepal.Length, Petal.Length))
# use vectorize to create your own function
# for example, a horribly inefficient get first non-Na value function
# a version that is not vectorized
coalesce <- function(a,b) {r <- c(a[1],b[1]); r[!is.na(r)][1]}
# a vectorized version
Coalesce <- Vectorize(coalesce, vectorize.args = c('a','b'))
# some example data
df <- data.frame(a = c(1:5,NA,7:10), b = c(1:3,NA,NA,6,NA,10:8))
df %>% mutate(ab =Coalesce(a,b))

C / C++ でベクトル化を実装すると高速になることに注意してください。ただしmagicPony、関数を作成するパッケージはありません。

于 2014-02-17T00:13:37.430 に答える
1

@alexwhan が提供する優れた回答に加えて、ungroup()副作用を避けるために使用する必要があることに注意してください。これはrowwise()、グループ化操作であるためです。

iris %>%
    rowwise() %>%
    mutate(Max.Len = max(Sepal.Length, Petal.Length))

あなたに与える:

   Sepal.Length Sepal.Width Petal.Length Petal.Width Species Max.Len
          <dbl>       <dbl>        <dbl>       <dbl> <fct>     <dbl>
 1          5.1         3.5          1.4         0.2 setosa      5.1
 2          4.9         3            1.4         0.2 setosa      4.9
 3          4.7         3.2          1.3         0.2 setosa      4.7
 4          4.6         3.1          1.5         0.2 setosa      4.6
 5          5           3.6          1.4         0.2 setosa      5  
 6          5.4         3.9          1.7         0.4 setosa      5.4
 7          4.6         3.4          1.4         0.3 setosa      4.6
 8          5           3.4          1.5         0.2 setosa      5  
 9          4.4         2.9          1.4         0.2 setosa      4.4
10          4.9         3.1          1.5         0.1 setosa      4.9

dplyrここで、 to を追加するためにパイプを続行する必要があると仮定しましょleadMax.Len:

iris %>%
    rowwise() %>%
    mutate(Max.Len = max(Sepal.Length, Petal.Length)) %>%
    mutate(Lead.Max.Len = lead(Max.Len))

これにより、次が生成されます。

   Sepal.Length Sepal.Width Petal.Length Petal.Width Species Max.Len Lead.Max.Len
          <dbl>       <dbl>        <dbl>       <dbl> <fct>     <dbl>        <dbl>
 1          5.1         3.5          1.4         0.2 setosa      5.1           NA
 2          4.9         3            1.4         0.2 setosa      4.9           NA
 3          4.7         3.2          1.3         0.2 setosa      4.7           NA
 4          4.6         3.1          1.5         0.2 setosa      4.6           NA
 5          5           3.6          1.4         0.2 setosa      5             NA
 6          5.4         3.9          1.7         0.4 setosa      5.4           NA
 7          4.6         3.4          1.4         0.3 setosa      4.6           NA
 8          5           3.4          1.5         0.2 setosa      5             NA
 9          4.4         2.9          1.4         0.2 setosa      4.4           NA
10          4.9         3.1          1.5         0.1 setosa      4.9           NA

NA副作用として発生します。これは次の方法で修正できますungroup()

iris %>%
    rowwise() %>%
    mutate(Max.Len = max(Sepal.Length, Petal.Length)) %>%
    ungroup() %>%
    mutate(Lead.Max.Len = lead(Max.Len))

これにより、目的の出力が生成されます。

   Sepal.Length Sepal.Width Petal.Length Petal.Width Species Max.Len lead.max.len
          <dbl>       <dbl>        <dbl>       <dbl> <fct>     <dbl>        <dbl>
 1          5.1         3.5          1.4         0.2 setosa      5.1          4.9
 2          4.9         3            1.4         0.2 setosa      4.9          4.7
 3          4.7         3.2          1.3         0.2 setosa      4.7          4.6
 4          4.6         3.1          1.5         0.2 setosa      4.6          5  
 5          5           3.6          1.4         0.2 setosa      5            5.4
 6          5.4         3.9          1.7         0.4 setosa      5.4          4.6
 7          4.6         3.4          1.4         0.3 setosa      4.6          5  
 8          5           3.4          1.5         0.2 setosa      5            4.4
 9          4.4         2.9          1.4         0.2 setosa      4.4          4.9
10          4.9         3.1          1.5         0.1 setosa      4.9          5.4
于 2020-09-20T11:12:23.080 に答える