34

rオブジェクトからオブジェクトのシーケンスを生成する方法はn? 私は、順列または組み合わせのいずれかを、置換の有無にかかわらず、明確なアイテムと区別のないアイテム(別名マルチセット)で行う方法を探しています。

これ は 十二 正道 に 関係 し てい る。「明確な」ソリューションは 12 通りの方法で含めることができますが、「明確でない」ソリューションは含まれません。

4

2 に答える 2

32

編集:より効率的なパッケージを使用するように回答を更新しましたarrangements

使い始めarrangement

アレンジメントには、順列と組み合わせのための効率的なジェネレーターとイテレーターが含まれています。arrangements同種の既存のパッケージのほとんどよりも優れていることが実証されています。いくつかのベンチマークはここにあります。

上記の質問に対する回答は次のとおりです

# 1) combinations: without replacement: distinct items

combinations(5, 2)

      [,1] [,2]
 [1,]    1    2
 [2,]    1    3
 [3,]    1    4
 [4,]    1    5
 [5,]    2    3
 [6,]    2    4
 [7,]    2    5
 [8,]    3    4
 [9,]    3    5
[10,]    4    5


# 2) combinations: with replacement: distinct items

combinations(5, 2, replace=TRUE)

      [,1] [,2]
 [1,]    1    1
 [2,]    1    2
 [3,]    1    3
 [4,]    1    4
 [5,]    1    5
 [6,]    2    2
 [7,]    2    3
 [8,]    2    4
 [9,]    2    5
[10,]    3    3
[11,]    3    4
[12,]    3    5
[13,]    4    4
[14,]    4    5
[15,]    5    5



# 3) combinations: without replacement: non distinct items

combinations(x = c("a", "b", "c"), freq = c(2, 1, 1), k = 2)

     [,1] [,2]
[1,] "a"  "a" 
[2,] "a"  "b" 
[3,] "a"  "c" 
[4,] "b"  "c" 



# 4) combinations: with replacement: non distinct items

combinations(x = c("a", "b", "c"), k = 2, replace = TRUE)  # as `freq` does not matter

     [,1] [,2]
[1,] "a"  "a" 
[2,] "a"  "b" 
[3,] "a"  "c" 
[4,] "b"  "b" 
[5,] "b"  "c" 
[6,] "c"  "c" 

# 5) permutations: without replacement: distinct items

permutations(5, 2)

      [,1] [,2]
 [1,]    1    2
 [2,]    1    3
 [3,]    1    4
 [4,]    1    5
 [5,]    2    1
 [6,]    2    3
 [7,]    2    4
 [8,]    2    5
 [9,]    3    1
[10,]    3    2
[11,]    3    4
[12,]    3    5
[13,]    4    1
[14,]    4    2
[15,]    4    3
[16,]    4    5
[17,]    5    1
[18,]    5    2
[19,]    5    3
[20,]    5    4



# 6) permutations: with replacement: distinct items

permutations(5, 2, replace = TRUE)

      [,1] [,2]
 [1,]    1    1
 [2,]    1    2
 [3,]    1    3
 [4,]    1    4
 [5,]    1    5
 [6,]    2    1
 [7,]    2    2
 [8,]    2    3
 [9,]    2    4
[10,]    2    5
[11,]    3    1
[12,]    3    2
[13,]    3    3
[14,]    3    4
[15,]    3    5
[16,]    4    1
[17,]    4    2
[18,]    4    3
[19,]    4    4
[20,]    4    5
[21,]    5    1
[22,]    5    2
[23,]    5    3
[24,]    5    4
[25,]    5    5


# 7) permutations: without replacement: non distinct items

permutations(x = c("a", "b", "c"), freq = c(2, 1, 1), k = 2)

     [,1] [,2]
[1,] "a"  "a" 
[2,] "a"  "b" 
[3,] "a"  "c" 
[4,] "b"  "a" 
[5,] "b"  "c" 
[6,] "c"  "a" 
[7,] "c"  "b" 



# 8) permutations: with replacement: non distinct items

permutations(x = c("a", "b", "c"), k = 2, replace = TRUE)  # as `freq` doesn't matter

      [,1] [,2]
 [1,] "a"  "a" 
 [2,] "a"  "b" 
 [3,] "a"  "c" 
 [4,] "b"  "a" 
 [5,] "b"  "b" 
 [6,] "b"  "c" 
 [7,] "c"  "a" 
 [8,] "c"  "b" 
 [9,] "c"  "c" 

他のパッケージと比較する

arrangements既存のパッケージを使用する利点はほとんどありません。

  1. 統合フレームワーク: メソッドごとに異なるパッケージを使用する必要はありません。

  2. とても効率的です。いくつかのベンチマークについては、 https://randy3k.github.io/arrangements/articles/benchmark.htmlを参照してください。

  3. メモリ効率が高く、13 個すべてを生成できます。1 から 13 の順列、既存のパッケージは行列サイズの制限により失敗します。イテレータのgetnext()メソッドにより、ユーザーは配置を 1 つずつ取得できます。

  4. 生成された配置は、一部のユーザーにとって望ましい辞書順になっています。

于 2014-03-21T20:52:29.947 に答える