7

R とこの投稿に基づくガイダンスを使用して標準エラーをクラスター化することはできません。cl 関数は次のエラーを返します。

Error in tapply(x, cluster1, sum) : arguments must have same length

読んだ後tapply、クラスター引数の長さが間違っている理由と、このエラーの原因はまだわかりません。

ここに私が使用しているデータセットへのリンクがあります。

https://www.dropbox.com/s/y2od7um9pp4vn0s/Ec%201820%20-%20DD%20Data%20with%20Controls.csv

Rコードは次のとおりです。

# read in data
charter<-read.csv(file.choose())
View(charter)
colnames(charter)

# standardize NAEP scores
charter$naep.standardized <- (charter$naep - mean(charter$naep, na.rm=T))/sd(charter$naep, na.rm=T)

# change NAs in year.passed column to 2014
charter$year.passed[is.na(charter$year.passed)]<-2014

# Add column with indicator for in treatment (passed legislation)
charter$treatment<-ifelse(charter$year.passed<=charter$year,1,0)

# fit model
charter.model<-lm(naep ~ factor(year) + factor(state) + treatment, data = charter)
summary(charter.model)
# account for clustered standard errors by state
cl(dat=charter, fm=charter.model, cluster=charter$state)

# accounting for controls
charter.model.controls<-lm(naep~factor)

# clustered standard errors
# ---------

# function that calculates clustered standard errors
# source: http://thetarzan.wordpress.com/2011/06/11/clustered-standard-errors-in-r/
cl   <- function(dat, fm, cluster){
  require(sandwich, quietly = TRUE)
  require(lmtest, quietly = TRUE)
  M <- length(unique(cluster))
  N <- length(cluster)
  K <- fm$rank
  dfc <- (M/(M-1))*((N-1)/(N-K))
  print(K)
  uj  <- apply(estfun(fm),2, function(x) tapply(x, cluster, sum));
  vcovCL <- dfc*sandwich(fm, meat=crossprod(uj)/N)
  coeftest(fm, vcovCL) 
}

# calculate clustered standard errors 
cl(charter, charter.model, charter$state)

関数の内部の仕組みは、私の頭を少し超えています。

4

2 に答える 2

5

コードを実行すると、線形モデルに欠落している観測があることに注意してください。

> summary(charter.model)

Call:
lm(formula = naep ~ factor(year) + factor(state) + treatment, 
    data = charter)

Residuals:
     Min       1Q   Median       3Q      Max 
-15.2420  -1.6740  -0.2024   1.8345  12.3580 

Coefficients:
                            Estimate Std. Error t value Pr(>|t|)    
(Intercept)                 250.4983     1.2115 206.767  < 2e-16 ***
factor(year)1992              3.7970     0.7198   5.275 2.17e-07 ***
factor(year)1996              7.0436     0.8607   8.183 3.64e-15 ***

[..]

Residual standard error: 3.128 on 404 degrees of freedom
  (759 observations deleted due to missingness)
Multiple R-squared:  0.9337,    Adjusted R-squared:  0.9239 
F-statistic: 94.85 on 60 and 404 DF,  p-value: < 2.2e-16

これが、表示されるError in tapply(x, cluster1, sum) : arguments must have same lengthエラー メッセージの原因です。

cl(dat=charter, fm=charter.model, cluster=charter$state)クラスター変数では、回帰推定で効果的に使用される観測数とまったく同じ長さを持つ必要があります( charter$stateNA のため、元のデータ フレームの行数と同じではありません)。


これを回避するには、次の手順を実行します。

  1. cl最初に、Arai の関数 ( )の古いバージョンを使用しています (古いバージョンと新しいバージョンの両方への参照については、Fama-MacBeth および Cluster-Robust (by Firm and Time) Standard Errors in Rを参照してください。後者は と呼ばれclxます)。

  2. vcov*第 2 に、この関数に対する Arai の最初のアプローチは少し複雑であり、からの関数の標準インターフェイスに実際に従っていないと思いますsandwich。そのため、わずかに変更されたバージョンのclx. コードをもう少し読みやすくし、インターフェイスをsandwich vcov*関数に期待するものに近づけました。

    vcovCL <- function(x, cluster.by, type="sss", dfcw=1){
        # R-codes (www.r-project.org) for computing
        # clustered-standard errors. Mahmood Arai, Jan 26, 2008.
    
        # The arguments of the function are:
        # fitted model, cluster1 and cluster2
        # You need to install libraries `sandwich' and `lmtest'
    
        # reweighting the var-cov matrix for the within model
        require(sandwich)
        cluster <- cluster.by
        M <- length(unique(cluster))   
        N <- length(cluster)
        stopifnot(N == length(x$residuals))
        K <- x$rank
        ##only Stata small-sample correction supported right now 
        ##see plm >= 1.5-4
        stopifnot(type=="sss")  
        if(type=="sss"){
            dfc <- (M/(M-1))*((N-1)/(N-K))
        }
        uj  <- apply(estfun(x), 2, function(y) tapply(y, cluster, sum))
        mycov <- dfc * sandwich(x, meat=crossprod(uj)/N) * dfcw
        return(mycov)
    }
    

データに対してこの関数を試すと、この特定の問題をキャッチすることがわかります。

> coeftest(charter.model, vcov=function(x) vcovCL(x, charter$state))
 Error: N == length(x$residuals) is not TRUE

この問題を回避するには、次の手順を実行します。

> charter.x <- na.omit(charter[ , c("state", 
                                  all.vars(formula(charter.model)))])
> coeftest(charter.model, vcov=function(x) vcovCL(x, charter.x$state)) 

t test of coefficients:

                               Estimate  Std. Error     t value  Pr(>|t|)    
(Intercept)                  2.5050e+02  9.3781e-01  2.6711e+02 < 2.2e-16 ***
factor(year)1992             3.7970e+00  5.6019e-01  6.7780e+00 4.330e-11 ***
factor(year)1996             7.0436e+00  8.8574e-01  7.9522e+00 1.856e-14 ***
factor(year)2000             8.4313e+00  1.0906e+00  7.7311e+00 8.560e-14 ***
factor(year)2003             1.2392e+01  1.1670e+00  1.0619e+01 < 2.2e-16 ***
factor(year)2005             1.3490e+01  1.1747e+00  1.1484e+01 < 2.2e-16 ***
factor(year)2007             1.6334e+01  1.2469e+00  1.3100e+01 < 2.2e-16 ***
factor(year)2009             1.8118e+01  1.2556e+00  1.4430e+01 < 2.2e-16 ***
factor(year)2011             1.9110e+01  1.3459e+00  1.4199e+01 < 2.2e-16 ***
factor(year)2013             1.9301e+01  1.4896e+00  1.2957e+01 < 2.2e-16 ***
factor(state)Alaska          1.4178e+01  8.7686e-01  1.6169e+01 < 2.2e-16 ***
factor(state)Arizona         8.6313e+00  8.1439e-01  1.0598e+01 < 2.2e-16 ***
factor(state)Arkansas        4.3313e+00  8.1439e-01  5.3185e+00 1.736e-07 ***
factor(state)California      3.1103e+00  9.1619e-01  3.3948e+00 0.0007549 ***
factor(state)Colorado        1.7939e+01  7.9736e-01  2.2498e+01 < 2.2e-16 ***
factor(state)Connecticut     1.8031e+01  8.1439e-01  2.2141e+01 < 2.2e-16 ***
factor(state)D.C.           -1.8369e+01  8.1439e-01 -2.2555e+01 < 2.2e-16 ***
factor(state)Delaware        1.2050e+01  7.9736e-01  1.5113e+01 < 2.2e-16 ***
factor(state)Florida         7.3838e+00  7.9736e-01  9.2602e+00 < 2.2e-16 ***
factor(state)Georgia         6.4313e+00  8.1439e-01  7.8971e+00 2.724e-14 ***
factor(state)Hawaii          3.3313e+00  8.1439e-01  4.0906e+00 5.196e-05 ***
factor(state)Idaho           1.7118e+01  7.8321e-01  2.1857e+01 < 2.2e-16 ***
factor(state)Illinois        1.2670e+01  8.2224e-01  1.5409e+01 < 2.2e-16 ***
factor(state)Indianna        1.7174e+01  6.1079e-01  2.8117e+01 < 2.2e-16 ***
factor(state)Iowa            2.0074e+01  6.8460e-01  2.9322e+01 < 2.2e-16 ***
factor(state)Kansas          2.0123e+01  8.6796e-01  2.3184e+01 < 2.2e-16 ***
factor(state)Kentucky        1.0200e+01  4.1999e-14  2.4287e+14 < 2.2e-16 ***
factor(state)Louisiana      -1.6866e-01  8.1439e-01 -2.0710e-01 0.8360322    
factor(state)Maine           2.0231e+01  1.7564e-01  1.1518e+02 < 2.2e-16 ***
factor(state)Maryland        1.4274e+01  6.1079e-01  2.3369e+01 < 2.2e-16 ***
factor(state)Massachusetts   2.4868e+01  8.3960e-01  2.9619e+01 < 2.2e-16 ***
factor(state)Michigan        1.2031e+01  8.1439e-01  1.4773e+01 < 2.2e-16 ***
factor(state)Minnesota       2.5110e+01  9.1619e-01  2.7407e+01 < 2.2e-16 ***
factor(state)Mississippi    -3.5470e+00  1.7564e-01 -2.0195e+01 < 2.2e-16 ***
factor(state)Missouri        1.3447e+01  7.2706e-01  1.8495e+01 < 2.2e-16 ***
factor(state)Montana         2.2512e+01  8.4814e-01  2.6543e+01 < 2.2e-16 ***
factor(state)Nebraska        1.9600e+01  4.3105e-14  4.5471e+14 < 2.2e-16 ***
factor(state)Nevada          4.9800e+00  8.6796e-01  5.7375e+00 1.887e-08 ***
factor(state)New Hampshire   2.2026e+01  7.6338e-01  2.8853e+01 < 2.2e-16 ***
factor(state)New Jersey      2.0651e+01  7.6338e-01  2.7052e+01 < 2.2e-16 ***
factor(state)New Mexico      1.5313e+00  8.1439e-01  1.8803e+00 0.0607809 .  
factor(state)New York        1.2152e+01  7.1259e-01  1.7054e+01 < 2.2e-16 ***
factor(state)North Carolina  1.2231e+01  8.1439e-01  1.5019e+01 < 2.2e-16 ***
factor(state)North Dakota    2.4278e+01  1.0420e-01  2.3299e+02 < 2.2e-16 ***
factor(state)Ohio            1.7118e+01  7.8321e-01  2.1857e+01 < 2.2e-16 ***
factor(state)Oklahoma        8.4518e+00  7.8321e-01  1.0791e+01 < 2.2e-16 ***
factor(state)Oregon          1.6535e+01  7.3538e-01  2.2486e+01 < 2.2e-16 ***
factor(state)Pennsylvania    1.6651e+01  7.6338e-01  2.1812e+01 < 2.2e-16 ***
factor(state)Rhode Island    9.5313e+00  8.1439e-01  1.1704e+01 < 2.2e-16 ***
factor(state)South Carolina  9.5346e+00  8.3960e-01  1.1356e+01 < 2.2e-16 ***
factor(state)South Dakota    2.1211e+01  3.5103e-01  6.0425e+01 < 2.2e-16 ***
factor(state)Tennessee       4.9148e+00  6.1473e-01  7.9951e+00 1.375e-14 ***
factor(state)Texas           1.4231e+01  8.1439e-01  1.7475e+01 < 2.2e-16 ***
factor(state)Utah            1.5114e+01  7.2706e-01  2.0787e+01 < 2.2e-16 ***
factor(state)Vermont         2.3474e+01  2.0299e-01  1.1564e+02 < 2.2e-16 ***
factor(state)Virginia        1.6252e+01  7.1259e-01  2.2807e+01 < 2.2e-16 ***
factor(state)Washington      1.9073e+01  1.8183e-01  1.0489e+02 < 2.2e-16 ***
factor(state)West Virginia   5.0000e+00  4.2022e-14  1.1899e+14 < 2.2e-16 ***
factor(state)Wisconsin       1.9994e+01  8.2447e-01  2.4251e+01 < 2.2e-16 ***
factor(state)Wyoming         1.8231e+01  8.1439e-01  2.2386e+01 < 2.2e-16 ***
treatment                    1.2108e+00  1.0180e+00  1.1894e+00 0.2349682    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

それは良くありませんが、仕事を成し遂げます。今clでも問題なく動作し、上記と同じ結果が得られます。

cl(dat=charter, fm=charter.model, cluster=charter.x$state)

これを行うより良い方法は、multiwayvcovパッケージを使用することです。パッケージのWeb サイトによると、これは Arai のコードを改良したものです。

欠落のために削除された観測の透明な処理

シミュレートされた NA と で Petersen データを使用するcluster.vcov():

library("lmtest")
library("multiwayvcov")

data(petersen)
set.seed(123)
petersen[ sample(1:5000, 15), 3] <- NA

m1 <- lm(y ~ x, data = petersen)
summary(m1)
## 
## Call:
## lm(formula = y ~ x, data = petersen)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.759 -1.371 -0.018  1.340  8.680 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  0.02793    0.02842   0.983    0.326    
## x            1.03635    0.02865  36.175   <2e-16 ***
## ---
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
## 
## Residual standard error: 2.007 on 4983 degrees of freedom
##   (15 observations deleted due to missingness)
## Multiple R-squared:  0.208,  Adjusted R-squared:  0.2078 
## F-statistic:  1309 on 1 and 4983 DF,  p-value: < 2.2e-16

coeftest(m1, vcov=function(x) cluster.vcov(x, petersen$firmid))
## 
## t test of coefficients:
## 
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 0.027932   0.067198  0.4157   0.6777    
## x           1.036354   0.050700 20.4407   <2e-16 ***
## ---
## Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

plmパッケージを使用した別のアプローチについては、次を参照してください。

于 2014-10-01T14:25:44.040 に答える