pyOpengl の glInterleavedArrays/glDrawArrays に送信する前に、多数の頂点とテクスチャ座標をインターリーブ配列にまとめようとしています。唯一の問題は、numpy 配列にデータを追加するのに十分な速度で適切な方法を見つけることができないことです。
これを行うより良い方法はありますか?配列を事前に割り当ててからデータを入力する方が速いと思っていましたが、代わりにpythonリストを生成してnumpy配列に変換する方が「高速」です。4096クワッドの15msは遅いようですが。
いくつかのサンプル コードとそのタイミングを含めました。
#!/usr/bin/python
import timeit
import numpy
import ctypes
import random
USE_RANDOM=True
USE_STATIC_BUFFER=True
STATIC_BUFFER = numpy.empty(4096*20, dtype=numpy.float32)
def render(i):
# pretend these are different each time
if USE_RANDOM:
tex_left, tex_right, tex_top, tex_bottom = random.random(), random.random(), random.random(), random.random()
left, right, top, bottom = random.random(), random.random(), random.random(), random.random()
else:
tex_left, tex_right, tex_top, tex_bottom = 0.0, 1.0, 1.0, 0.0
left, right, top, bottom = -1.0, 1.0, 1.0, -1.0
ibuffer = (
tex_left, tex_bottom, left, bottom, 0.0, # Lower left corner
tex_right, tex_bottom, right, bottom, 0.0, # Lower right corner
tex_right, tex_top, right, top, 0.0, # Upper right corner
tex_left, tex_top, left, top, 0.0, # upper left
)
return ibuffer
# create python list.. convert to numpy array at end
def create_array_1():
ibuffer = []
for x in xrange(4096):
data = render(x)
ibuffer += data
ibuffer = numpy.array(ibuffer, dtype=numpy.float32)
return ibuffer
# numpy.array, placing individually by index
def create_array_2():
if USE_STATIC_BUFFER:
ibuffer = STATIC_BUFFER
else:
ibuffer = numpy.empty(4096*20, dtype=numpy.float32)
index = 0
for x in xrange(4096):
data = render(x)
for v in data:
ibuffer[index] = v
index += 1
return ibuffer
# using slicing
def create_array_3():
if USE_STATIC_BUFFER:
ibuffer = STATIC_BUFFER
else:
ibuffer = numpy.empty(4096*20, dtype=numpy.float32)
index = 0
for x in xrange(4096):
data = render(x)
ibuffer[index:index+20] = data
index += 20
return ibuffer
# using numpy.concat on a list of ibuffers
def create_array_4():
ibuffer_concat = []
for x in xrange(4096):
data = render(x)
# converting makes a diff!
data = numpy.array(data, dtype=numpy.float32)
ibuffer_concat.append(data)
return numpy.concatenate(ibuffer_concat)
# using numpy array.put
def create_array_5():
if USE_STATIC_BUFFER:
ibuffer = STATIC_BUFFER
else:
ibuffer = numpy.empty(4096*20, dtype=numpy.float32)
index = 0
for x in xrange(4096):
data = render(x)
ibuffer.put( xrange(index, index+20), data)
index += 20
return ibuffer
# using ctype array
CTYPES_ARRAY = ctypes.c_float*(4096*20)
def create_array_6():
ibuffer = []
for x in xrange(4096):
data = render(x)
ibuffer += data
ibuffer = CTYPES_ARRAY(*ibuffer)
return ibuffer
def equals(a, b):
for i,v in enumerate(a):
if b[i] != v:
return False
return True
if __name__ == "__main__":
number = 100
# if random, don't try and compare arrays
if not USE_RANDOM and not USE_STATIC_BUFFER:
a = create_array_1()
assert equals( a, create_array_2() )
assert equals( a, create_array_3() )
assert equals( a, create_array_4() )
assert equals( a, create_array_5() )
assert equals( a, create_array_6() )
t = timeit.Timer( "testing2.create_array_1()", "import testing2" )
print 'from list:', t.timeit(number)/number*1000.0, 'ms'
t = timeit.Timer( "testing2.create_array_2()", "import testing2" )
print 'array: indexed:', t.timeit(number)/number*1000.0, 'ms'
t = timeit.Timer( "testing2.create_array_3()", "import testing2" )
print 'array: slicing:', t.timeit(number)/number*1000.0, 'ms'
t = timeit.Timer( "testing2.create_array_4()", "import testing2" )
print 'array: concat:', t.timeit(number)/number*1000.0, 'ms'
t = timeit.Timer( "testing2.create_array_5()", "import testing2" )
print 'array: put:', t.timeit(number)/number*1000.0, 'ms'
t = timeit.Timer( "testing2.create_array_6()", "import testing2" )
print 'ctypes float array:', t.timeit(number)/number*1000.0, 'ms'
乱数を使用したタイミング:
$ python testing2.py
from list: 15.0486779213 ms
array: indexed: 24.8184704781 ms
array: slicing: 50.2214789391 ms
array: concat: 44.1691994667 ms
array: put: 73.5879898071 ms
ctypes float array: 20.6674289703 ms
編集メモ: オブジェクトの再利用を減らし、毎回異なる頂点をシミュレートするために、レンダリングごとに乱数を生成するようにコードを変更しました。
編集注 2: 静的バッファーを追加し、すべての numpy.empty() で dtype=float32 を使用するように強制します
注 2010 年 4 月 1 日: まだ進展がなく、どの回答でもまだ問題が解決したとは思えません。