順伝播をTheanoでコーディングしてみました。クラス名 hiddenLayer を次のように定義します。
theano.tensor を theano から T としてインポート 共有をインポート theano から np として numpy をインポート インポート関数
class hiddenLayer():
""" Hidden Layer class
"""
def __init__(self, n_in, n_out):
rng = np.random
self.W = shared(np.asarray(rng.uniform(low=-np.sqrt(6. / (n_in + n_out)),
high=np.sqrt(6. / (n_in + n_out)),
size=(n_in, n_out)),
dtype=T.config.floatX),
name='W')
self.b = shared(np.zeros(n_out, dtype=T.config.floatX), name='b')
self.x = T.dvector('x')
self.a = T.tanh(T.dot(self.x, self.W) + self.b)
self.W_sum = shared(np.zeros([n_in, n_out]), name='W_sum')
self.gw = 0
self.gb = 0
hiddenLayer オブジェクトのリストを設定したいのですが、現在の hiddenLayer は次の hiddenLayer の入力です。最後に、 forward buy という名前の関数を定義し、エラーが発生し、コードは次のようになります。
def init_network(n_in, n_out, sl, x, y):
l = []
for i in range(sl):
l.append(hiddenLayer(n_in, n_out))
for i in range(sl):
if i == 0:
l[i].x = x
elif i < sl-1:
l[i].x = l[i-1].a
else:
l[i].x = l[i-1].a
y = l[i].a
return x, y, l
x = T.dvector('x')
y = T.dvector('y')
x, y, l = init_network(3, 3, 3, x, y)
forward = function(inputs=[x], outputs=y)
エラーメッセージは次のとおりです。
theano.compile.function_module.UnusedInputError: theano.function was asked to create a function computing outputs given certain inputs, but the provided input variable at index 0 is not part of the computational graph needed to compute the outputs: x.
To make this error into a warning, you can pass the parameter on_unused_input='warn' to theano.function. To disable it completely, use on_unused_input='ignore'.
何が問題なのか、どのように解決すればよいのか教えていただけないでしょうか? ありがとう