新入生 Haskell プログラマー
fac n = if n == 0
then 1
else n * fac (n-1)
MIT の 2 年生 Haskell プログラマー (新入生として Scheme を学びました)
fac = (\(n) ->
(if ((==) n 0)
then 1
else ((*) n (fac ((-) n 1)))))
ジュニア Haskell プログラマー (ペアノ初心者)
fac 0 = 1
fac (n+1) = (n+1) * fac n
別のジュニア Haskell プログラマー (n+k パターンは「Haskell の嫌な部分」[1] であり、「n+k パターンを禁止する」運動に参加した [2] を読んでください)
fac 0 = 1
fac n = n * fac (n-1)
シニア Haskell プログラマー (Nixon Buchanan Bush に投票 - 「右傾化」)
fac n = foldr (*) 1 [1..n]
別の上級 Haskell プログラマー (McGovern Biafra Nader に投票 - 「左傾化」)
fac n = foldl (*) 1 [1..n]
もう一人の上級 Haskell プログラマー (右に傾いていたのに左に戻った!)
-- using foldr to simulate foldl
fac n = foldr (\x g n -> g (x*n)) id [1..n] 1
Haskell プログラマーのメモ化 (Ginkgo Biloba を毎日実行)
facs = scanl (*) 1 [1..]
fac n = facs !! n
無意味 (エヘム) 「ポイントフリー」Haskell プログラマー (オックスフォードで学ぶ)
fac = foldr (*) 1 . enumFromTo 1
反復 Haskell プログラマー (元 Pascal プログラマー)
fac n = result (for init next done)
where init = (0,1)
next (i,m) = (i+1, m * (i+1))
done (i,_) = i==n
result (_,m) = m
for i n d = until d n i
反復ワンライナー Haskell プログラマー (元 APL および C プログラマー)
fac n = snd (until ((>n) . fst) (\(i,m) -> (i+1, i*m)) (1,1))
Haskell プログラマーの蓄積 (急速なクライマックスへの構築)
facAcc a 0 = a
facAcc a n = facAcc (n*a) (n-1)
fac = facAcc 1
継続合格の Haskell プログラマー (初期は RABBITS で育ち、その後ニュージャージーに移住)
facCps k 0 = k 1
facCps k n = facCps (k . (n *)) (n-1)
fac = facCps id
ボーイスカウトの Haskell プログラマー (結び目を作るのが好き。常に「敬虔」で、最小不動点教会 [8] に所属)
y f = f (y f)
fac = y (\f n -> if (n==0) then 1 else n * f (n-1))
コンビナトリ Haskell プログラマー (難読化ではないにしても、変数を避けます。このすべてのカリー化は単なるフェーズですが、ほとんど妨げられません)
s f g x = f x (g x)
k x y = x
b f g x = f (g x)
c f g x = f x g
y f = f (y f)
cond p f g x = if p x then f x else g x
fac = y (b (cond ((==) 0) (k 1)) (b (s (*)) (c b pred)))
リスト エンコーディング Haskell プログラマー (単項カウントを好む)
arb = () -- "undefined" is also a good RHS, as is "arb" :)
listenc n = replicate n arb
listprj f = length . f . listenc
listprod xs ys = [ i (x,y) | x<-xs, y<-ys ]
where i _ = arb
facl [] = listenc 1
facl n@(_:pred) = listprod n (facl pred)
fac = listprj facl
解釈型 Haskell プログラマー (嫌いな「言語に出会ったことはない」)
-- a dynamically-typed term language
data Term = Occ Var
| Use Prim
| Lit Integer
| App Term Term
| Abs Var Term
| Rec Var Term
type Var = String
type Prim = String
-- a domain of values, including functions
data Value = Num Integer
| Bool Bool
| Fun (Value -> Value)
instance Show Value where
show (Num n) = show n
show (Bool b) = show b
show (Fun _) = ""
prjFun (Fun f) = f
prjFun _ = error "bad function value"
prjNum (Num n) = n
prjNum _ = error "bad numeric value"
prjBool (Bool b) = b
prjBool _ = error "bad boolean value"
binOp inj f = Fun (\i -> (Fun (\j -> inj (f (prjNum i) (prjNum j)))))
-- environments mapping variables to values
type Env = [(Var, Value)]
getval x env = case lookup x env of
Just v -> v
Nothing -> error ("no value for " ++ x)
-- an environment-based evaluation function
eval env (Occ x) = getval x env
eval env (Use c) = getval c prims
eval env (Lit k) = Num k
eval env (App m n) = prjFun (eval env m) (eval env n)
eval env (Abs x m) = Fun (\v -> eval ((x,v) : env) m)
eval env (Rec x m) = f where f = eval ((x,f) : env) m
-- a (fixed) "environment" of language primitives
times = binOp Num (*)
minus = binOp Num (-)
equal = binOp Bool (==)
cond = Fun (\b -> Fun (\x -> Fun (\y -> if (prjBool b) then x else y)))
prims = [ ("*", times), ("-", minus), ("==", equal), ("if", cond) ]
-- a term representing factorial and a "wrapper" for evaluation
facTerm = Rec "f" (Abs "n"
(App (App (App (Use "if")
(App (App (Use "==") (Occ "n")) (Lit 0))) (Lit 1))
(App (App (Use "*") (Occ "n"))
(App (Occ "f")
(App (App (Use "-") (Occ "n")) (Lit 1))))))
fac n = prjNum (eval [] (App facTerm (Lit n)))
静的 Haskell プログラマー (彼はクラスでそれを行います。彼はそのファンデップ ジョーンズを持っています! Thomas Hallgren の「Fun with Functional Dependencies」[7] の後)
-- static Peano constructors and numerals
data Zero
data Succ n
type One = Succ Zero
type Two = Succ One
type Three = Succ Two
type Four = Succ Three
-- dynamic representatives for static Peanos
zero = undefined :: Zero
one = undefined :: One
two = undefined :: Two
three = undefined :: Three
four = undefined :: Four
-- addition, a la Prolog
class Add a b c | a b -> c where
add :: a -> b -> c
instance Add Zero b b
instance Add a b c => Add (Succ a) b (Succ c)
-- multiplication, a la Prolog
class Mul a b c | a b -> c where
mul :: a -> b -> c
instance Mul Zero b Zero
instance (Mul a b c, Add b c d) => Mul (Succ a) b d
-- factorial, a la Prolog
class Fac a b | a -> b where
fac :: a -> b
instance Fac Zero One
instance (Fac n k, Mul (Succ n) k m) => Fac (Succ n) m
-- try, for "instance" (sorry):
--
-- :t fac four
初心者の Haskell プログラマー (大学院教育を受けると、たとえばハードウェアベースの整数の効率などに関するささいな懸念から解放される傾向があります)
-- the natural numbers, a la Peano
data Nat = Zero | Succ Nat
-- iteration and some applications
iter z s Zero = z
iter z s (Succ n) = s (iter z s n)
plus n = iter n Succ
mult n = iter Zero (plus n)
-- primitive recursion
primrec z s Zero = z
primrec z s (Succ n) = s n (primrec z s n)
-- two versions of factorial
fac = snd . iter (one, one) (\(a,b) -> (Succ a, mult a b))
fac' = primrec one (mult . Succ)
-- for convenience and testing (try e.g. "fac five")
int = iter 0 (1+)
instance Show Nat where
show = show . int
(zero : one : two : three : four : five : _) = iterate Succ Zero
Origamist Haskell プログラマー (常に「基本的な Bird フォールド」から始めます)
-- (curried, list) fold and an application
fold c n [] = n
fold c n (x:xs) = c x (fold c n xs)
prod = fold (*) 1
-- (curried, boolean-based, list) unfold and an application
unfold p f g x =
if p x
then []
else f x : unfold p f g (g x)
downfrom = unfold (==0) id pred
-- hylomorphisms, as-is or "unfolded" (ouch! sorry ...)
refold c n p f g = fold c n . unfold p f g
refold' c n p f g x =
if p x
then n
else c (f x) (refold' c n p f g (g x))
-- several versions of factorial, all (extensionally) equivalent
fac = prod . downfrom
fac' = refold (*) 1 (==0) id pred
fac'' = refold' (*) 1 (==0) id pred
デカルト志向の Haskell プログラマー (ギリシャ料理を好み、スパイシーなインド料理は避けます。Lex Augusteijn の「Sorting Morphisms」[3] に触発されました)
-- (product-based, list) catamorphisms and an application
cata (n,c) [] = n
cata (n,c) (x:xs) = c (x, cata (n,c) xs)
mult = uncurry (*)
prod = cata (1, mult)
-- (co-product-based, list) anamorphisms and an application
ana f = either (const []) (cons . pair (id, ana f)) . f
cons = uncurry (:)
downfrom = ana uncount
uncount 0 = Left ()
uncount n = Right (n, n-1)
-- two variations on list hylomorphisms
hylo f g = cata g . ana f
hylo' f (n,c) = either (const n) (c . pair (id, hylo' f (c,n))) . f
pair (f,g) (x,y) = (f x, g y)
-- several versions of factorial, all (extensionally) equivalent
fac = prod . downfrom
fac' = hylo uncount (1, mult)
fac'' = hylo' uncount (1, mult)
博士号 Haskell プログラマー (あまりにも多くのバナナを食べて目が飛び出し、新しいレンズが必要になりました!)
-- explicit type recursion based on functors
newtype Mu f = Mu (f (Mu f)) deriving Show
in x = Mu x
out (Mu x) = x
-- cata- and ana-morphisms, now for *arbitrary* (regular) base functors
cata phi = phi . fmap (cata phi) . out
ana psi = in . fmap (ana psi) . psi
-- base functor and data type for natural numbers,
-- using a curried elimination operator
data N b = Zero | Succ b deriving Show
instance Functor N where
fmap f = nelim Zero (Succ . f)
nelim z s Zero = z
nelim z s (Succ n) = s n
type Nat = Mu N
-- conversion to internal numbers, conveniences and applications
int = cata (nelim 0 (1+))
instance Show Nat where
show = show . int
zero = in Zero
suck = in . Succ -- pardon my "French" (Prelude conflict)
plus n = cata (nelim n suck )
mult n = cata (nelim zero (plus n))
-- base functor and data type for lists
data L a b = Nil | Cons a b deriving Show
instance Functor (L a) where
fmap f = lelim Nil (\a b -> Cons a (f b))
lelim n c Nil = n
lelim n c (Cons a b) = c a b
type List a = Mu (L a)
-- conversion to internal lists, conveniences and applications
list = cata (lelim [] (:))
instance Show a => Show (List a) where
show = show . list
prod = cata (lelim (suck zero) mult)
upto = ana (nelim Nil (diag (Cons . suck)) . out)
diag f x = f x x
fac = prod . upto
ポスドク Haskell プログラマー (Uustalu、Vene、および Pardo の「Recursion Schemes from Comonads」[4] より)
-- explicit type recursion with functors and catamorphisms
newtype Mu f = In (f (Mu f))
unIn (In x) = x
cata phi = phi . fmap (cata phi) . unIn
-- base functor and data type for natural numbers,
-- using locally-defined "eliminators"
data N c = Z | S c
instance Functor N where
fmap g Z = Z
fmap g (S x) = S (g x)
type Nat = Mu N
zero = In Z
suck n = In (S n)
add m = cata phi where
phi Z = m
phi (S f) = suck f
mult m = cata phi where
phi Z = zero
phi (S f) = add m f
-- explicit products and their functorial action
data Prod e c = Pair c e
outl (Pair x y) = x
outr (Pair x y) = y
fork f g x = Pair (f x) (g x)
instance Functor (Prod e) where
fmap g = fork (g . outl) outr
-- comonads, the categorical "opposite" of monads
class Functor n => Comonad n where
extr :: n a -> a
dupl :: n a -> n (n a)
instance Comonad (Prod e) where
extr = outl
dupl = fork id outr
-- generalized catamorphisms, zygomorphisms and paramorphisms
gcata :: (Functor f, Comonad n) =>
(forall a. f (n a) -> n (f a))
-> (f (n c) -> c) -> Mu f -> c
gcata dist phi = extr . cata (fmap phi . dist . fmap dupl)
zygo chi = gcata (fork (fmap outl) (chi . fmap outr))
para :: Functor f => (f (Prod (Mu f) c) -> c) -> Mu f -> c
para = zygo In
-- factorial, the *hard* way!
fac = para phi where
phi Z = suck zero
phi (S (Pair f n)) = mult f (suck n)
-- for convenience and testing
int = cata phi where
phi Z = 0
phi (S f) = 1 + f
instance Show (Mu N) where
show = show . int
終身教授 (新入生に Haskell を教える)
fac n = product [1..n]