3

私は自分の文書を次のように持っています:

 doc1 = very good, very bad, you are great
 doc2 = very bad, good restaurent, nice place to visit

,最終的に次のようになるように、コーパスを分離したいと思いDocumentTermMatrixます。

      terms
 docs       very good      very bad        you are great   good restaurent   nice place to visit
  doc1       tf-idf          tf-idf         tf-idf          0                    0
  doc2       0                tf-idf         0                tf-idf             tf-idf

個々の単語の計算方法は知っていますが、RDocumentTermMatrixでコーパスを作成する方法がわかりません。separated for each phraseRPython

私が試したことは次のとおりです。

> library(tm)
> library(RWeka)
> BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 1, max = 3))
> options(mc.cores=1)
> texts <- c("very good, very bad, you are great","very bad, good restaurent, nice place to visit")
> corpus <- Corpus(VectorSource(texts))
> a <- TermDocumentMatrix(corpus, control = list(tokenize = BigramTokenizer))
> as.matrix(a)

私は得ています:

                         Docs
  Terms                   1 2
  bad good restaurent   0 1
  bad you are           1 0
  good restaurent nice  0 1
  good very bad         1 0
  nice place to         0 1
  place to visit        0 1
  restaurent nice place 0 1
  very bad good         0 1
  very bad you          1 0
  very good very        1 0
  you are great         1 0

私が欲しいのは単語の組み合わせではなく、マトリックスで示したフレーズだけです。

4

3 に答える 3

1

qdap+tmパッケージを使用したアプローチの 1 つを次に示します。

library(qdap); library(tm); library(qdapTools)

dat <- list2df(list(doc1 = "very good, very bad, you are great",
 doc2 = "very bad, good restaurent, nice place to visit"), "text", "docs")

x <- sub_holder(", ", dat$text)

m <- dtm(wfm(x$unhold(gsub(" ", "~~", x$output)), dat$docs) )
weightTfIdf(m)

inspect(weightTfIdf(m))

## A document-term matrix (2 documents, 5 terms)
## 
## Non-/sparse entries: 4/6
## Sparsity           : 60%
## Maximal term length: 19 
## Weighting          : term frequency - inverse document frequency (normalized) (tf-idf)
## 
##       Terms
## Docs   good restaurent nice place to visit very bad very good you are great
##   doc1       0.0000000           0.0000000        0 0.3333333     0.3333333
##   doc2       0.3333333           0.3333333        0 0.0000000     0.0000000

ワン フォール スウープを実行して a を返すこともできますDocumentTermMatrixが、これは理解しにくいかもしれません。

x <- sub_holder(", ", dat$text)

apply_as_tm(t(wfm(x$unhold(gsub(" ", "~~", x$output)), dat$docs)), 
    weightTfIdf, to.qdap=FALSE)
于 2014-06-04T14:28:40.483 に答える
0

strsplit を使用してカンマで分割し、いくつかの文字と組み合わせてフレーズを単一の「単語」に変えたらどうなるでしょうか。例えば

library(tm)
docs <- c(D1 = "very good, very bad, you are great", 
    D2 = "very bad, good restaurent, nice place to visit")

dd <- Corpus(VectorSource(docs))
dd <- tm_map(dd, function(x) {
    PlainTextDocument(
       gsub("\\s+","~",strsplit(x,",\\s*")[[1]]), 
       id=ID(x)
     )
})
inspect(dd)

# A corpus with 2 text documents
# 
# The metadata consists of 2 tag-value pairs and a data frame
# Available tags are:
#   create_date creator 
# Available variables in the data frame are:
#   MetaID 

# $D1
# very~good
# very~bad
# you~are~great
# 
# $D2
# very~bad
# good~restaurent
# nice~place~to~visit

dtm <- DocumentTermMatrix(dd, control = list(weighting = weightTfIdf))
as.matrix(dtm)

これにより、

# Docs good~restaurent nice~place~to~visit very~bad very~good you~are~great
#   D1       0.0000000           0.0000000        0 0.3333333     0.3333333
#   D2       0.3333333           0.3333333        0 0.0000000     0.0000000
于 2014-06-04T15:21:00.300 に答える