gensimを使用して、ドキュメントのコレクションから辞書を作成します。各ドキュメントはトークンのリストです。これは私のコード
def constructModel(self, docTokens):
""" Given document tokens, constructs the tf-idf and similarity models"""
#construct dictionary for the BOW (vector-space) model : Dictionary = a mapping between words and their integer ids = collection of (word_index,word_string) pairs
#print "dictionary"
self.dictionary = corpora.Dictionary(docTokens)
# prune dictionary: remove words that appear too infrequently or too frequently
print "dictionary size before filter_extremes:",self.dictionary#len(self.dictionary.values())
#self.dictionary.filter_extremes(no_below=1, no_above=0.9, keep_n=100000)
#self.dictionary.compactify()
print "dictionary size after filter_extremes:",self.dictionary
#construct the corpus bow vectors; bow vector = collection of (word_id,word_frequency) pairs
corpus_bow = [self.dictionary.doc2bow(doc) for doc in docTokens]
#construct the tf-idf model
self.model = models.TfidfModel(corpus_bow,normalize=True)
corpus_tfidf = self.model[corpus_bow] # first transform each raw bow vector in the corpus to the tfidf model's vector space
self.similarityModel = similarities.MatrixSimilarity(corpus_tfidf) # construct the term-document index
私の質問は、この辞書に新しいドキュメント (トークン) を追加して更新する方法です。gensim ドキュメントを検索しましたが、解決策が見つかりませんでした