それを証明する必要がある CLRS からの質問を解決しています (ceil(lg lg n))! は多項式で有界です。
Let g(n)=(ceil(lg lg n))!
lg(g(n))=lg((ceil(lg lg n))!)
=theta(ceil(lg lg n) * lg (ceil(lg lg n))) [since lg(n!)=theta(n * lg n)
and replacing n by ceil(lg lg n) here.]
=theta((lg lg n) * (lg lg lg n)) ----(1) [since ceil(n)=theta(n)
and replacing n by (lg lg n) here.]
theta(lg n)=o(n) を証明できれば
=>theta(lg lg lg n)=o(lg lg n)
=>theta((lg lg n) * (lg lg lg n))=o((lg lg n) * (lg lg n))
=o((lg lg n)^2)
=o(lg^2(lg n))
=o(lg n) ----(2) [Polylogarithmic functions grow slower than
polynomial functions.
=>log^b(n)=o(n^a)
=>log^2(log n)=o(logn^1)
=>log^2(log n)=o(log n)]
From (1) and (2) we have log(g(n))=o(log n)
=>g(n)=o(n^a) that is g(n) is polynomially bounded.
私が直面している唯一の問題は、theta(lg n)=o(n)であることを証明することです。助けてください!