1000 例のデータセットがあり、500 例がポジティブで 500 例がネガティブです。私はそれらを 0.7 の分割比率で検証してから、25 ノードの 2 つのレイヤーを持つことを除いて、デフォルトのパラメーターを使用して Rapidminers MP に配置します。
しかし、それを検証すると、私の予測はすべて否定的であり、その理由がわかりません。最適化された MP が貧弱であっても (まさにこの例のように)、少なくとも 1 つの肯定的な予測が得られるはずです。
まあ、これは私がrapidminerでこれを行うのは初めてで、おそらく非常に基本的な間違いですが、見つけることができません.
XML コード:
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.3.008">
<context>
<input/>
<output/>
<macros/>
</context>
<operator activated="true" class="process" compatibility="5.3.008" expanded="true" name="Process">
<process expanded="true">
<operator activated="true" class="split_validation" compatibility="5.3.008" expanded="true" height="112" name="Validation (6)" width="90" x="112" y="255">
<process expanded="true">
<operator activated="true" class="neural_net" compatibility="5.3.008" expanded="true" height="76" name="Neural Net" width="90" x="69" y="30">
<list key="hidden_layers">
<parameter key="Layer" value="25"/>
<parameter key="Layer2" value="25"/>
</list>
<parameter key="training_cycles" value="100"/>
<parameter key="shuffle" value="false"/>
</operator>
<connect from_port="training" to_op="Neural Net" to_port="training set"/>
<connect from_op="Neural Net" from_port="model" to_port="model"/>
<portSpacing port="source_training" spacing="0"/>
<portSpacing port="sink_model" spacing="0"/>
<portSpacing port="sink_through 1" spacing="0"/>
</process>
<process expanded="true">
<operator activated="true" class="apply_model" compatibility="5.3.008" expanded="true" height="76" name="Apply Model (6)" width="90" x="45" y="30">
<list key="application_parameters"/>
</operator>
<operator activated="true" class="performance" compatibility="5.3.008" expanded="true" height="76" name="Performance (6)" width="90" x="147" y="30"/>
<connect from_port="model" to_op="Apply Model (6)" to_port="model"/>
<connect from_port="test set" to_op="Apply Model (6)" to_port="unlabelled data"/>
<connect from_op="Apply Model (6)" from_port="labelled data" to_op="Performance (6)" to_port="labelled data"/>
<connect from_op="Performance (6)" from_port="performance" to_port="averagable 1"/>
<portSpacing port="source_model" spacing="0"/>
<portSpacing port="source_test set" spacing="0"/>
<portSpacing port="source_through 1" spacing="0"/>
<portSpacing port="sink_averagable 1" spacing="0"/>
<portSpacing port="sink_averagable 2" spacing="0"/>
</process>
</operator>
<portSpacing port="source_input 1" spacing="0"/>
<portSpacing port="sink_result 1" spacing="0"/>
</process>
</operator>
</process>