このコードを使用して、ORB 特徴検出器を使用して 2 つの画像間の一致を見つけています。
FeatureDetector detector = FeatureDetector.create(FeatureDetector.ORB);
DescriptorExtractor descriptor = DescriptorExtractor.create(DescriptorExtractor.ORB);;
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
// First photo
Imgproc.cvtColor(img1, img1, Imgproc.COLOR_RGB2GRAY);
Mat descriptors1 = new Mat();
MatOfKeyPoint keypoints1 = new MatOfKeyPoint();
detector.detect(img1, keypoints1);
descriptor.compute(img1, keypoints1, descriptors1);
// Second photo
Imgproc.cvtColor(img2, img2, Imgproc.COLOR_RGB2GRAY);
Mat descriptors2 = new Mat();
MatOfKeyPoint keypoints2 = new MatOfKeyPoint();
detector.detect(img2, keypoints2);
descriptor.compute(img2, keypoints2, descriptors2);
// Matching
MatOfDMatch matches = new MatOfDMatch();
MatOfDMatch filteredMatches = new MatOfDMatch();
matcher.match(descriptors1, descriptors2, matches);
// Linking
Scalar RED = new Scalar(255,0,0);
Scalar GREEN = new Scalar(0,255,0);
List<DMatch> matchesList = matches.toList();
Double max_dist = 0.0;
Double min_dist = 100.0;
for(int i = 0;i < matchesList.size(); i++){
Double dist = (double) matchesList.get(i).distance;
if (dist < min_dist)
min_dist = dist;
if ( dist > max_dist)
max_dist = dist;
}
LinkedList<DMatch> good_matches = new LinkedList<DMatch>();
for(int i = 0;i < matchesList.size(); i++){
if (matchesList.get(i).distance <= (1.5 * min_dist))
good_matches.addLast(matchesList.get(i));
}
// Printing
MatOfDMatch goodMatches = new MatOfDMatch();
goodMatches.fromList(good_matches);
System.out.println(matches.size() + " " + goodMatches.size());
Mat outputImg = new Mat();
MatOfByte drawnMatches = new MatOfByte();
Features2d.drawMatches(img1, keypoints1, img2, keypoints2, goodMatches, outputImg, GREEN, RED, drawnMatches, Features2d.NOT_DRAW_SINGLE_POINTS);
Highgui.imwrite("matches.png", outputImg);
私の問題は、一致をフィルター処理して、写真内の位置が似ている場合にのみ一致するようにする方法が見つからないことです。位置的に非常に離れていても、1 つのキーポイントに対して常に複数の一致が得られます。
それらをより適切にフィルタリングする方法はありますか?