8

ggvis を使用して、2014 シーズンの NFL スケジュールの強さのグラフを作成しようとしています。データは FootballOutsiders.com から取得されます。後で、シーズン中に更新された Web サイトから自動的にデータをスクレイピングする Shiny アプリを作成します。以下の例はかなり近いですが、いくつか変更を加えたいと思います。したい...

  1. グラフの各セルに「防御」の数値を含めて、視覚化が元の「df」データ フレームに似るようにします。

  2. カラー スケールをカスタマイズして、正の値が次第にオレンジ色に、負の値が次第に青色になるようにします (つまり、負の値が大きくなるほど青色が強くなります)。

  3. #2の代わりに、オレンジから青へのグラデーションを作成し、「防御」の値がゼロに近づくにつれて不透明度を0.5に減少させることができます.

  4. 現在チャートでは黒で表示されているため、NA の色を選択できるようにします。

add_scale()とをいじくり回してきましたがprops()、これまでのところ何も機能していません。

チャートは次のとおりです。 ここに画像の説明を入力

データは次のとおりです。

df <- structure(list(team = c("ARI", "ATL", "BAL", "BUF", "CAR", "CHI", 
"CIN", "CLE", "DAL", "DEN", "DET", "GB", "HOU", "IND", "JAX", 
"KC", "MIA", "MIN", "NE", "NO", "NYG", "NYJ", "OAK", "PHI", "PIT", 
"SD", "SEA", "SF", "STL", "TB", "TEN", "WAS"), w1 = c(17.5, -5.8, 
-12.6, 8.7, -6.8, -13.8, -8.7, 4, -4.6, 0.9, -11.4, -25.9, 4.2, 
-0.2, 4.9, 4.2, 4.2, -5.7, 2.4, 13.5, -0.8, 10.3, -5.6, 10.9, 
8.2, -16.4, 14.4, 13.8, 10.5, -15.7, -6.7, 2.5), w2 = c(-11.4, 
-12.6, 4, 2.4, -0.8, -4.6, 13.5, -5.8, 4.2, -6.7, -15.7, -5.6, 
10.3, 4.9, 4.2, -0.2, -13.8, 4.2, 10.5, 8.2, -16.4, 14.4, 2.5, 
0.9, -8.7, -25.9, 17.5, 8.7, -6.8, -5.7, 13.8, 10.9), w3 = c(-4.6, 
-6.8, 8.2, 17.5, 4, -5.6, 4.2, -8.7, -5.7, -25.9, 14.4, -0.8, 
-11.4, 10.9, 0.9, 2.4, -6.7, -5.8, 10.3, 10.5, 2.5, 8.7, 4.2, 
4.2, -15.7, -13.8, -0.2, -16.4, 13.8, 13.5, -12.6, 4.9), w4 = c(NA, 
10.5, -15.7, 2.5, -8.7, 14.4, NA, NA, -5.8, NA, -5.6, 8.7, -13.8, 
4.2, 17.5, 4.2, 10.3, 13.5, -6.7, 13.8, 4.2, -0.8, 2.4, -4.6, 
-6.8, 10.9, NA, 4.9, NA, 4, 0.9, -11.4), w5 = c(-0.2, -11.4, 
0.9, -0.8, 8.7, -15.7, 4.2, 4.2, 2.5, -16.4, -13.8, 10.5, 13.8, 
-8.7, 4, -4.6, NA, 14.4, -12.6, -6.8, 13.5, 17.5, NA, -5.7, 10.9, 
-5.6, 4.2, -6.7, 4.9, -5.8, 8.2, -25.9), w6 = c(4.2, 8.7, -6.8, 
4.2, -12.6, 13.5, -15.7, 4, -25.9, -5.6, 10.5, 2.4, 0.9, 2.5, 
4.2, NA, 14.4, -0.8, -13.8, NA, 4.9, -0.2, 17.5, -11.4, 8.2, 
10.3, 13.8, -5.7, -4.6, -8.7, 10.9, -16.4), w7 = c(10.3, -8.7, 
13.5, 10.5, 14.4, 2.4, 0.9, 10.9, -11.4, -4.6, -5.8, -15.7, 4, 
-12.6, 8.2, 17.5, 8.7, -13.8, -5.6, -0.8, 13.8, 4.2, -16.4, NA, 
2.5, -6.7, -5.7, -0.2, -25.9, NA, 4.2, 4.2), w8 = c(4.9, -0.8, 
-12.6, -5.6, -25.9, 4.2, -8.7, 10.3, 4.2, 17.5, 13.5, -5.8, 4.2, 
4, 2.4, -5.7, 10.9, -6.8, 8.7, 14.4, NA, -13.8, 8.2, -16.4, 0.9, 
-0.2, -15.7, NA, -6.7, 10.5, 2.5, 13.8), w9 = c(13.8, NA, 4, 
NA, -5.8, NA, 10.9, -6.8, -16.4, 4.2, NA, NA, 4.9, -11.4, -12.6, 
-5.6, 17.5, 4.2, -0.2, -15.7, 0.9, -6.7, -25.9, 2.5, -8.7, 2.4, 
10.3, -5.7, -4.6, 8.2, NA, 10.5), w10 = c(-5.7, -6.8, 4.2, -6.7, 
4.9, 14.4, 8.2, -12.6, 10.9, 10.3, 2.4, 8.7, NA, NA, 13.8, -13.8, 
-0.8, NA, NA, -4.6, -25.9, 4, -0.2, -15.7, -5.6, NA, -11.4, -5.8, 
-16.4, 13.5, -8.7, NA), w11 = c(-0.8, -15.7, NA, 2.4, 13.5, 10.5, 
-5.8, 2.5, NA, -5.7, -16.4, 4.9, 8.2, 4.2, NA, -25.9, -13.8, 
8.7, 0.9, -12.6, -4.6, NA, 17.5, 14.4, 4.2, 10.3, -6.7, -11.4, 
-0.2, 4.2, 4, -6.8), w12 = c(-25.9, 8.2, -5.8, -5.6, NA, -6.8, 
2.5, 13.5, -11.4, 2.4, 4.2, 10.5, -12.6, 10.9, 0.9, 10.3, -0.2, 
14.4, -0.8, -8.7, 13.8, -13.8, -6.7, 4.2, NA, -5.7, -16.4, 4.2, 
17.5, 8.7, 4.9, -4.6), w13 = c(13.5, -16.4, 17.5, 8.2, 10.5, 
-0.8, -6.8, -13.8, 4.9, -6.7, 8.7, 4.2, 4.2, 4.2, -11.4, -0.2, 
-5.6, -15.7, 14.4, 4, 10.9, 2.4, -5.7, 13.8, -5.8, -8.7, -4.6, 
-25.9, 10.3, -12.6, 2.5, 0.9), w14 = c(-6.7, 14.4, 2.4, -0.2, 
-5.8, 13.8, 4, 0.9, 8.7, -13.8, -6.8, 13.5, 10.9, 8.2, 2.5, -16.4, 
-8.7, -5.6, 17.5, -15.7, 4.2, 10.5, -4.6, -25.9, -12.6, 4.2, 
4.9, 10.3, 4.2, -0.8, -11.4, -5.7), w15 = c(-5.7, 4, 10.9, 14.4, 
-6.8, -5.8, 8.2, -12.6, 4.9, 17.5, 10.5, -13.8, 0.9, 2.5, -8.7, 
10.3, 4.2, -0.8, 2.4, 8.7, 4.2, 4.2, -6.7, 13.8, 13.5, -0.2, 
-4.6, -25.9, -16.4, -15.7, -5.6, -11.4), w16 = c(-25.9, -5.8, 
2.5, 10.3, 8.2, -0.8, -0.2, -15.7, 0.9, -12.6, 8.7, -6.8, -8.7, 
13.8, 4.2, 4, 10.5, 2.4, -5.6, 13.5, -5.7, 4.2, -13.8, 4.2, -6.7, 
-4.6, -16.4, 17.5, -11.4, 14.4, 10.9, 4.9), w17 = c(-4.6, -15.7, 
8.2, 4.2, 13.5, 10.5, 4, -8.7, 4.2, 10.3, 14.4, -0.8, 10.9, 4.2, 
2.5, 17.5, -5.6, 8.7, -13.8, -6.8, 4.9, 2.4, -0.2, -11.4, -12.6, 
-6.7, -5.7, -16.4, -25.9, -5.8, 0.9, 13.8)), .Names = c("team", 
"w1", "w2", "w3", "w4", "w5", "w6", "w7", "w8", "w9", "w10", 
"w11", "w12", "w13", "w14", "w15", "w16", "w17"), row.names = c(NA, 
32L), class = "data.frame")

これまでのコードは次のとおりです。

require(dplyr)
require(ggvis)
require(tidyr) # For the gather function

df2 <- df %>% gather(key, value, w1:w17)
names(df2) <- c("team", "week", "defense")

df2 %>% 
  ggvis(~week, ~team, fill = ~defense) %>%
  layer_rects(width = band(), height = band()) %>%
  scale_nominal("x", padding = 0, points = FALSE) %>%
  scale_nominal("y", padding = 0, points = FALSE)
4

2 に答える 2

15

の各値を特定の色にdef.colorマップする新しい変数を作成して、各セルの色を設定します。defenseでは、データ フレームに色変数を追加するのではなく、 などの 1 行のコードggplot2を使用して、呼び出し内で色を直接設定できます。でそれを行う方法があることを願っていますが、まだ見つけていません。というわけで、とりあえず、以下に進みます。ggplotscale_fill_manual()ggvis

# Create a new variable df2$def.color for mapping df2$defense values to colors

# Functions to create color ramps for the blue and orange color ranges
Blue = colorRampPalette(c("darkblue","lightblue"))
Orange = colorRampPalette(c("orange","darkorange3"))

# Negative values of defense get a blue color scale with 10 colors
df2$def.color[!is.na(df2$defense) & df2$defense<0] = 
  as.character(cut(df2$defense[!is.na(df2$defense) & df2$defense<0], 
                   seq(min(df2$defense - 0.1, na.rm=TRUE), 0, length.out=11), 
                   labels=Blue(10)))

# Positive values of defense get an orange color scale with 10 colors
df2$def.color[!is.na(df2$defense) & df2$defense>=0] = 
  as.character(cut(df2$defense[!is.na(df2$defense) & df2$defense>=0], 
                   seq(0, max(df2$defense, na.rm=TRUE)+0.1, length.out=11), 
                   labels=Orange(10)))

# Set NA values in df2$def.color to light gray in df2$def.color
df2$def.color[is.na(df2$defense)] = "#E5E5E5"  

# Set NA values in df2$defense to blanks so that we won't get "NaN" in cells with 
# missing data
df2$defense[is.na(df2$defense)] = ""

次に、プロットを作成します。色を取得するには、 usingにマップdef.colorしてデフォルトの色をオーバーライドします。useの値を追加します。各セル内のテキストの配置には満足していませんが、今のところこれが最高です。fill:=defenselayer_text

df2 %>% 
  ggvis(~week, ~team, fill:=~def.color) %>% 
  layer_rects(width = band(), height = band()) %>%
  scale_nominal("x", padding = 0, points = FALSE) %>%
  scale_nominal("y", padding = 0, points = FALSE) %>%
  layer_text(text:=~defense, stroke:="white", align:="left", baseline:="top") 

ここに画像の説明を入力

于 2014-07-17T22:04:00.457 に答える