次の CUDA コードのグローバル メモリ アクセス数を取得するために nvprof を使用しています。カーネル内のロード数は 36 (d_In 配列へのアクセス) であり、カーネル内のストア数は 36+36 (d_Out 配列および d_rows 配列へのアクセス) です。そのため、グローバル メモリ ロードの合計数は 36 で、グローバル メモリ ストアの数は 72 です。ただし、nvprof CUDA プロファイラーでコードをプロファイリングすると、次のようにレポートされます。 (CGMA)比)
1 gld_transactions Global Load Transactions 6 6 6
1 gst_transactions Global Store Transactions 11 11 11
1 l2_read_transactions L2 Read Transactions 133 133 133
1 l2_write_transactions L2 Write Transactions 24 24 24
#include <stdio.h>
#include "cuda_profiler_api.h"
__constant__ int crows;
__global__ void kernel(double *d_In, double *d_Out, int *d_rows){
int tx=threadIdx.x;
int bx=blockIdx.x;
int n=bx*blockDim.x+tx;
if(n < 36){
d_Out[n]=d_In[n]+1;
d_rows[n]=crows;
}
return;
}
int main(int argc,char **argv){
double I[36]={1,5,9,2,6,10,3,7,11,4,8,12,13,17,21,14,18,22,15,19,23,16,20,24,25,29,33,26,30,34,27,31,35,28,32,36};
double *d_In;
double *d_Out;
int *d_rows;
double Iout[36];
int rows=5;
int h_rows[36];
cudaMemcpyToSymbol(crows,&rows,sizeof(int));
cudaMalloc(&d_In,sizeof(double)*36);
cudaMalloc(&d_Out,sizeof(double)*36);
cudaMalloc(&d_rows,sizeof(int)*36);
cudaMemcpy(d_In,I,sizeof(double)*36,cudaMemcpyHostToDevice);
dim3 dimGrid(4,1,1);
dim3 dimBlock(10,1,1);
cudaProfilerStart();
kernel<<<dimGrid,dimBlock>>>(d_In,d_Out,d_rows);
cudaProfilerStop();
cudaMemcpy(Iout,d_Out,sizeof(double)*36,cudaMemcpyDeviceToHost);
cudaMemcpy(h_rows,d_rows,sizeof(int)*36,cudaMemcpyDeviceToHost);
int i;
for(i=0;i<36;i++)
printf("%f %d\n",Iout[i],h_rows[i]);
}
誰かが私を助けることができますか?ありがとうございました