9

Apache Spark SQL を使用して、S3 の json ログ データを S3 上の Parquet ファイルに etl しようとしています。私のコードは基本的に次のとおりです。

import org.apache.spark._
val sqlContext = sql.SQLContext(sc)
val data = sqlContext.jsonFile("s3n://...", 10e-6)
data.saveAsParquetFile("s3n://...")

このコードは、最大 2000 個のパーティションがある場合に機能し、データの量に関係なく、5000 個以上で失敗します。通常はパーティションを合体させて許容できる数にすることができますが、これは非常に大きなデータセットであり、2000 個のパーティションでこの質問で説明されている問題に遭遇しました

14/10/10 00:34:32 INFO scheduler.DAGScheduler: Stage 1 (runJob at ParquetTableOperations.scala:318) finished in 759.274 s
14/10/10 00:34:32 INFO scheduler.TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool 
14/10/10 00:34:32 INFO spark.SparkContext: Job finished: runJob at ParquetTableOperations.scala:318, took 759.469302077 s
14/10/10 00:34:34 WARN hadoop.ParquetOutputCommitter: could not write summary file for ...
java.io.IOException: Could not read footer: java.lang.NullPointerException
        at parquet.hadoop.ParquetFileReader.readAllFootersInParallel(ParquetFileReader.java:190)
        at parquet.hadoop.ParquetFileReader.readAllFootersInParallel(ParquetFileReader.java:203)
        at parquet.hadoop.ParquetOutputCommitter.commitJob(ParquetOutputCommitter.java:49)
        at org.apache.spark.sql.parquet.InsertIntoParquetTable.saveAsHadoopFile(ParquetTableOperations.scala:319)
        at org.apache.spark.sql.parquet.InsertIntoParquetTable.execute(ParquetTableOperations.scala:246)
        at org.apache.spark.sql.SQLContext$QueryExecution.toRdd$lzycompute(SQLContext.scala:409)
        at org.apache.spark.sql.SQLContext$QueryExecution.toRdd(SQLContext.scala:409)
        at org.apache.spark.sql.SchemaRDDLike$class.saveAsParquetFile(SchemaRDDLike.scala:77)
        at org.apache.spark.sql.SchemaRDD.saveAsParquetFile(SchemaRDD.scala:103)
        at $line37.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:39)
        at $line37.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:44)
        at $line37.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:46)
        at $line37.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:48)
        at $line37.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:50)
        at $line37.$read$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:52)
        at $line37.$read$$iwC$$iwC$$iwC$$iwC.<init>(<console>:54)
        at $line37.$read$$iwC$$iwC$$iwC.<init>(<console>:56)
        at $line37.$read$$iwC$$iwC.<init>(<console>:58)
        at $line37.$read$$iwC.<init>(<console>:60)
        at $line37.$read.<init>(<console>:62)
        at $line37.$read$.<init>(<console>:66)
        at $line37.$read$.<clinit>(<console>)
        at $line37.$eval$.<init>(<console>:7)
        at $line37.$eval$.<clinit>(<console>)
        at $line37.$eval.$print(<console>)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:789)
        at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1062)
        at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:615)
        at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:646)
        at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:610)
        at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:814)
        at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:859)
        at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:771)
        at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:616)
        at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:624)
        at org.apache.spark.repl.SparkILoop.loop(SparkILoop.scala:629)
        at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply$mcZ$sp(SparkILoop.scala:954)
        at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:902)
        at org.apache.spark.repl.SparkILoop$$anonfun$process$1.apply(SparkILoop.scala:902)
        at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
        at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:902)
        at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:997)
        at org.apache.spark.repl.Main$.main(Main.scala:31)
        at org.apache.spark.repl.Main.main(Main.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:606)
        at org.apache.spark.deploy.SparkSubmit$.launch(SparkSubmit.scala:328)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:75)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: java.lang.NullPointerException
        at org.apache.hadoop.fs.s3native.NativeS3FileSystem$NativeS3FsInputStream.close(NativeS3FileSystem.java:106)
        at java.io.BufferedInputStream.close(BufferedInputStream.java:472)
        at java.io.FilterInputStream.close(FilterInputStream.java:181)
        at parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:298)
        at parquet.hadoop.ParquetFileReader$2.call(ParquetFileReader.java:180)
        at parquet.hadoop.ParquetFileReader$2.call(ParquetFileReader.java:176)
        at java.util.concurrent.FutureTask.run(FutureTask.java:262)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:745)

これを、ec2 の R3.xlarge の spark-1.1.0 で実行しています。上記のコードを実行するために、spark-shell コンソールを使用しています。その後、SchemaRDD オブジェクトに対して重要なクエリを実行できるようにdataなったため、リソースの問題ではないようです。結果の Parquet ファイルを読み取ってクエリを実行することもできますが、サマリー ファイルがないため非常に時間がかかります。

4

1 に答える 1