13

これは既に GitHubの問題であることに気付きました。Pandas DataFrame を Orange Table に変換するコードを持っている人はいますか?

明示的に、次の表があります。

       user  hotel  star_rating  user  home_continent  gender
0         1     39          4.0     1               2  female
1         1     44          3.0     1               2  female
2         2     63          4.5     2               3  female
3         2      2          2.0     2               3  female
4         3     26          4.0     3               1    male
5         3     37          5.0     3               1    male
6         3     63          4.5     3               1    male
4

8 に答える 8

19

The documentation of Orange package didn't cover all the details. Table._init__(Domain, numpy.ndarray) works only for int and float according to lib_kernel.cpp.

They really should provide an C-level interface for pandas.DataFrames, or at least numpy.dtype("str") support.

Update: Adding table2df, df2table performance improved greatly by utilizing numpy for int and float.

Keep this piece of script in your orange python script collections, now you are equipped with pandas in your orange environment.

Usage: a_pandas_dataframe = table2df( a_orange_table ) , a_orange_table = df2table( a_pandas_dataframe )

Note: This script works only in Python 2.x, refer to @DustinTang 's answer for Python 3.x compatible script.

import pandas as pd
import numpy as np
import Orange

#### For those who are familiar with pandas
#### Correspondence:
####    value <-> Orange.data.Value
####        NaN <-> ["?", "~", "."] # Don't know, Don't care, Other
####    dtype <-> Orange.feature.Descriptor
####        category, int <-> Orange.feature.Discrete # category: > pandas 0.15
####        int, float <-> Orange.feature.Continuous # Continuous = core.FloatVariable
####                                                 # refer to feature/__init__.py
####        str <-> Orange.feature.String
####        object <-> Orange.feature.Python
####    DataFrame.dtypes <-> Orange.data.Domain
####    DataFrame.DataFrame <-> Orange.data.Table = Orange.orange.ExampleTable 
####                              # You will need this if you are reading sources

def series2descriptor(d, discrete=False):
    if d.dtype is np.dtype("float"):
        return Orange.feature.Continuous(str(d.name))
    elif d.dtype is np.dtype("int"):
        return Orange.feature.Continuous(str(d.name), number_of_decimals=0)
    else:
        t = d.unique()
        if discrete or len(t) < len(d) / 2:
            t.sort()
            return Orange.feature.Discrete(str(d.name), values=list(t.astype("str")))
        else:
            return Orange.feature.String(str(d.name))


def df2domain(df):
    featurelist = [series2descriptor(df.icol(col)) for col in xrange(len(df.columns))]
    return Orange.data.Domain(featurelist)


def df2table(df):
    # It seems they are using native python object/lists internally for Orange.data types (?)
    # And I didn't find a constructor suitable for pandas.DataFrame since it may carry
    # multiple dtypes
    #  --> the best approximate is Orange.data.Table.__init__(domain, numpy.ndarray),
    #  --> but the dtype of numpy array can only be "int" and "float"
    #  -->  * refer to src/orange/lib_kernel.cpp 3059:
    #  -->  *    if (((*vi)->varType != TValue::INTVAR) && ((*vi)->varType != TValue::FLOATVAR))
    #  --> Documents never mentioned >_<
    # So we use numpy constructor for those int/float columns, python list constructor for other

    tdomain = df2domain(df)
    ttables = [series2table(df.icol(i), tdomain[i]) for i in xrange(len(df.columns))]
    return Orange.data.Table(ttables)

    # For performance concerns, here are my results
    # dtndarray = np.random.rand(100000, 100)
    # dtlist = list(dtndarray)
    # tdomain = Orange.data.Domain([Orange.feature.Continuous("var" + str(i)) for i in xrange(100)])
    # tinsts = [Orange.data.Instance(tdomain, list(dtlist[i]) )for i in xrange(len(dtlist))] 
    # t = Orange.data.Table(tdomain, tinsts)
    #
    # timeit list(dtndarray)  # 45.6ms
    # timeit [Orange.data.Instance(tdomain, list(dtlist[i])) for i in xrange(len(dtlist))] # 3.28s
    # timeit Orange.data.Table(tdomain, tinsts) # 280ms

    # timeit Orange.data.Table(tdomain, dtndarray) # 380ms
    #
    # As illustrated above, utilizing constructor with ndarray can greatly improve performance
    # So one may conceive better converter based on these results


def series2table(series, variable):
    if series.dtype is np.dtype("int") or series.dtype is np.dtype("float"):
        # Use numpy
        # Table._init__(Domain, numpy.ndarray)
        return Orange.data.Table(Orange.data.Domain(variable), series.values[:, np.newaxis])
    else:
        # Build instance list
        # Table.__init__(Domain, list_of_instances)
        tdomain = Orange.data.Domain(variable)
        tinsts = [Orange.data.Instance(tdomain, [i]) for i in series]
        return Orange.data.Table(tdomain, tinsts)
        # 5x performance


def column2df(col):
    if type(col.domain[0]) is Orange.feature.Continuous:
        return (col.domain[0].name, pd.Series(col.to_numpy()[0].flatten()))
    else:
        tmp = pd.Series(np.array(list(col)).flatten())  # type(tmp) -> np.array( dtype=list (Orange.data.Value) )
        tmp = tmp.apply(lambda x: str(x[0]))
        return (col.domain[0].name, tmp)

def table2df(tab):
    # Orange.data.Table().to_numpy() cannot handle strings
    # So we must build the array column by column,
    # When it comes to strings, python list is used
    series = [column2df(tab.select(i)) for i in xrange(len(tab.domain))]
    series_name = [i[0] for i in series]  # To keep the order of variables unchanged
    series_data = dict(series)
    print series_data
    return pd.DataFrame(series_data, columns=series_name)
于 2014-10-19T01:33:41.573 に答える
5

pandas DataFrame を Orange Table に変換するには、列の型を指定するドメインを構築する必要があります。

連続変数の場合、変数の名前のみを指定する必要がありますが、離散変数の場合は、すべての可能な値のリストも指定する必要があります。

次のコードは、DataFrame のドメインを構築し、それを Orange Table に変換します。

import numpy as np
from Orange.feature import Discrete, Continuous
from Orange.data import Domain, Table
domain = Domain([
    Discrete('user', values=[str(v) for v in np.unique(df.user)]),
    Discrete('hotel', values=[str(v) for v in np.unique(df.hotel)]),
    Continuous('star_rating'),
    Discrete('user', values=[str(v) for v in np.unique(df.user)]),
    Discrete('home_continent', values=[str(v) for v in np.unique(df.home_continent)]),
    Discrete('gender', values=['male', 'female'])], False)
table = Table(domain, [map(str, row) for row in df.as_matrix()])

map(str, row) ステップが必要であるため、Orange は、データに個別の特徴の値が含まれていることを認識しています (値リスト内の値のインデックスではありません)。

于 2014-10-18T15:38:36.457 に答える