これは、わずか 8KB のルックアップ テーブルを使用した高速な方法です。間違いは結果の ~0.5% です。表は簡単に拡大できるので、間違いを減らすことができます。通常の sqrt() よりも約 5 倍高速に実行されます
// LUT for fast sqrt of floats. Table will be consist of 2 parts, half for sqrt(X) and half for sqrt(2X).
const int nBitsForSQRTprecision = 11; // Use only 11 most sagnificant bits from the 23 of float. We can use 15 bits instead. It will produce less error but take more place in a memory.
const int nUnusedBits = 23 - nBitsForSQRTprecision; // Amount of bits we will disregard
const int tableSize = (1 << (nBitsForSQRTprecision+1)); // 2^nBits*2 because we have 2 halves of the table.
static short sqrtTab[tableSize];
static unsigned char is_sqrttab_initialized = FALSE; // Once initialized will be true
// Table of precalculated sqrt() for future fast calculation. Approximates the exact with an error of about 0.5%
// Note: To access the bits of a float in C quickly we must misuse pointers.
// More info in: http://en.wikipedia.org/wiki/Single_precision
void build_fsqrt_table(void){
unsigned short i;
float f;
UINT32 *fi = (UINT32*)&f;
if (is_sqrttab_initialized)
return;
const int halfTableSize = (tableSize>>1);
for (i=0; i < halfTableSize; i++){
*fi = 0;
*fi = (i << nUnusedBits) | (127 << 23); // Build a float with the bit pattern i as mantissa, and an exponent of 0, stored as 127
// Take the square root then strip the first 'nBitsForSQRTprecision' bits of the mantissa into the table
f = sqrtf(f);
sqrtTab[i] = (short)((*fi & 0x7fffff) >> nUnusedBits);
// Repeat the process, this time with an exponent of 1, stored as 128
*fi = 0;
*fi = (i << nUnusedBits) | (128 << 23);
f = sqrtf(f);
sqrtTab[i+halfTableSize] = (short)((*fi & 0x7fffff) >> nUnusedBits);
}
is_sqrttab_initialized = TRUE;
}
// Calculation of a square root. Divide the exponent of float by 2 and sqrt() its mantissa using the precalculated table.
float fast_float_sqrt(float n){
if (n <= 0.f)
return 0.f; // On 0 or negative return 0.
UINT32 *num = (UINT32*)&n;
short e; // Exponent
e = (*num >> 23) - 127; // In 'float' the exponent is stored with 127 added.
*num &= 0x7fffff; // leave only the mantissa
// If the exponent is odd so we have to look it up in the second half of the lookup table, so we set the high bit.
const int halfTableSize = (tableSize>>1);
const int secondHalphTableIdBit = halfTableSize << nUnusedBits;
if (e & 0x01)
*num |= secondHalphTableIdBit;
e >>= 1; // Divide the exponent by two (note that in C the shift operators are sign preserving for signed operands
// Do the table lookup, based on the quaternary mantissa, then reconstruct the result back into a float
*num = ((sqrtTab[*num >> nUnusedBits]) << nUnusedBits) | ((e + 127) << 23);
return n;
}