Xray ライブラリ (Python の ND ラベル付き配列とデータセット) を試しています。転置を使用してインデックスの順序を変更していますが、結果は変わりません。
次のコード セグメントは、NetCDF ファイルにアクセスして xray データセットに割り当て、データのサブセットを抽出し、Pandas DataFrame を作成して、結果を CSV ファイルに出力します。
次に、xray Dataset の次元が転置され、同じプロセスでサブセットが抽出され、DataFrame が作成され、CSV が出力されます。結果は同じです。
import pandas as pd
import xray
# access NetCDF over HTTP
ds = xray.open_dataset('http://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/noaa.oisst.v2/sst.mnmean.nc')
# Extract subset of data using indexes: time, lat, lon
sst = ds['sst'][133:157, 80:100, 180:260]
# Convert to Dataframe
df = sst.to_dataframe()
# Outut to csv format
df.to_csv('c:/dev/sst1.csv', mode='w')
'''
lat lon time sst
9.5 180.5 1993-01-01 00:00:00 26.799999401
9.5 180.5 1993-02-01 00:00:00 27.0699993949
9.5 180.5 1993-03-01 00:00:00 27.1199993938
9.5 180.5 1993-04-01 00:00:00 27.379999388
9.5 180.5 1993-05-01 00:00:00 27.8499993775
9.5 180.5 1993-06-01 00:00:00 28.1699993704
9.5 180.5 1993-07-01 00:00:00 28.2799993679
9.5 180.5 1993-08-01 00:00:00 28.7999993563
9.5 180.5 1993-09-01 00:00:00 29.2099993471
9.5 180.5 1993-10-01 00:00:00 29.2199993469
9.5 180.5 1993-11-01 00:00:00 28.7099993583
9.5 180.5 1993-12-01 00:00:00 28.0799993724
9.5 180.5 1994-01-01 00:00:00 27.7999993786
9.5 180.5 1994-02-01 00:00:00 27.649999382
9.5 180.5 1994-03-01 00:00:00 27.7599993795
9.5 180.5 1994-04-01 00:00:00 28.1099993717
9.5 180.5 1994-05-01 00:00:00 28.3799993657
9.5 180.5 1994-06-01 00:00:00 28.3099993672
9.5 180.5 1994-07-01 00:00:00 28.3599993661
9.5 180.5 1994-08-01 00:00:00 29.1899993476
9.5 180.5 1994-09-01 00:00:00 29.6899993364
9.5 180.5 1994-10-01 00:00:00 29.4799993411
9.5 180.5 1994-11-01 00:00:00 29.0999993496
9.5 180.5 1994-12-01 00:00:00 28.4199993648
9.5 181.5 1993-01-01 00:00:00 26.8399994001
9.5 181.5 1993-02-01 00:00:00 27.1399993934
9.5 181.5 1993-03-01 00:00:00 27.1399993934
...
'''
# Transpose dimensions
ds_T = ds.transpose('lon', 'lat', 'time', 'nbnds')
# Extract subset the data using indexes: lon, lat, time
sst = ds_T['sst'][180:260, 80:100, 133:157]
# Convert to Dataframe
df = sst.to_dataframe()
# Outut to csv format
df.to_csv('c:/dev/sst2.csv', mode='w')
'''
lat lon time sst
9.5 180.5 1993-01-01 00:00:00 26.799999401
9.5 180.5 1993-02-01 00:00:00 27.0699993949
9.5 180.5 1993-03-01 00:00:00 27.1199993938
9.5 180.5 1993-04-01 00:00:00 27.379999388
9.5 180.5 1993-05-01 00:00:00 27.8499993775
9.5 180.5 1993-06-01 00:00:00 28.1699993704
9.5 180.5 1993-07-01 00:00:00 28.2799993679
9.5 180.5 1993-08-01 00:00:00 28.7999993563
9.5 180.5 1993-09-01 00:00:00 29.2099993471
9.5 180.5 1993-10-01 00:00:00 29.2199993469
9.5 180.5 1993-11-01 00:00:00 28.7099993583
9.5 180.5 1993-12-01 00:00:00 28.0799993724
9.5 180.5 1994-01-01 00:00:00 27.7999993786
9.5 180.5 1994-02-01 00:00:00 27.649999382
9.5 180.5 1994-03-01 00:00:00 27.7599993795
9.5 180.5 1994-04-01 00:00:00 28.1099993717
9.5 180.5 1994-05-01 00:00:00 28.3799993657
9.5 180.5 1994-06-01 00:00:00 28.3099993672
9.5 180.5 1994-07-01 00:00:00 28.3599993661
9.5 180.5 1994-08-01 00:00:00 29.1899993476
9.5 180.5 1994-09-01 00:00:00 29.6899993364
9.5 180.5 1994-10-01 00:00:00 29.4799993411
9.5 180.5 1994-11-01 00:00:00 29.0999993496
9.5 180.5 1994-12-01 00:00:00 28.4199993648
9.5 181.5 1993-01-01 00:00:00 26.8399994001
9.5 181.5 1993-02-01 00:00:00 27.1399993934
9.5 181.5 1993-03-01 00:00:00 27.1399993934
...
'''