R でのカーネル密度の推定について質問があります。(x、y、z) 位置、発生時間、いくつかのイベント (地震など) のサイズで構成される 5 次元データがあります (データセット)。5D カーネル密度推定を見つけるために、R で次のコードを書きました。
library(ks)
library(rgl)
kern <- read.table(file.choose(), sep=",")
evpts <- do.call(expand.grid,lapply(kern,quantile, prob=c(.1,.15,.2,.25,.3,.35,.4,.45,.5,.55,.6,.65,.7,.75,.8,.85,.9,.95)))
hat <- kde(kern, eval.points= evpts)
str(hat)
ここで、カーネル密度の推定を視覚化したいと思います。私は、1 つのプロットで 5 次元すべてに関するカーネルを (ポイントに異なる色またはサイズを使用して) 表示するか、少なくとも 3 次元に関して個別に表示することを好みます。何か提案はありますか?
データは次のとおりです。
x y z time size
422.697323 164.19886 2.457419 8.083796636 0.83367586
423.008236 163.32434 0.5551326 37.58477455 0.893893903
204.733908 218.36365 1.9397874 37.88324312 0.912809449
203.963056 218.4808 0.3723791 43.21775903 0.926406005
100.727581 46.60876 1.4022341 49.41510519 0.782807523
453.335182 244.25521 1.6292517 51.73779175 0.903910803
134.909462 210.96333 2.2389119 53.13433521 0.896529401
135.300562 212.02055 0.6739541 67.55073745 0.748783521
258.237117 134.29735 2.1205291 76.34032587 0.735699304
341.305271 149.26953 3.718958 94.33975483 0.849509216
307.138925 59.60571 0.6311074 106.9636715 0.987923188
307.76875 58.91453 2.6496741 113.8515307 0.802115718
415.025535 217.17398 1.7155688 115.7464603 0.875580325
414.977687 216.73327 1.7107369 115.9776948 0.767143582
311.006135 173.24378 2.7819572 120.8079566 0.925380118
310.116929 174.28122 4.3318722 129.2648401 0.776528535
347.260911 37.34946 3.5155427 136.7851291 0.851787115
351.317624 33.65703 0.5806926 138.7349284 0.909723017
4.471892 59.42068 1.4062959 139.0543783 0.967270976
5.480223 59.72857 2.7326106 139.2114277 0.987787428
199.513023 21.53302 2.5163259 143.5895625 0.864164659
198.718031 23.50163 0.4801849 147.2280466 0.741587333
26.650517 35.2019 0.8246514 150.4876506 0.744788202
25.089379 90.47825 0.8700944 152.1944046 0.777252476
26.307439 88.41552 2.4422487 155.9090026 0.952215177
234.282901 236.11422 1.8115261 155.9658144 0.776284654
235.052948 236.77437 1.9644963 156.6900297 0.944285448
23.048202 98.6261 3.4573048 159.7700912 0.773057491
21.516695 98.05431 2.5029284 160.8202997 0.978779087
213.936324 151.87013 3.1042192 161.0612489 0.80499513
277.887935 197.25753 1.3659279 163.673142 0.758978575
277.239746 197.54001 2.2109361 166.2629868 0.775325157