3

mice多くの因子変数があるRのパッケージからの乗算帰属モデルがあります。例えば:

library(mice)
library(Hmisc)

# turn all the variables into factors
fake = nhanes
fake$age = as.factor(nhanes$age)
fake$bmi = cut2(nhanes$bmi, g=3) 
fake$chl = cut2(nhanes$chl, g=3) 

head(fake)
  age         bmi hyp       chl
1   1        <NA>  NA      <NA>
2   2 [20.4,25.5)   1 [187,206)
3   1        <NA>   1 [187,206)
4   3        <NA>  NA      <NA>
5   1 [20.4,25.5)   1 [113,187)
6   3        <NA>  NA [113,187)

imput = mice(nhanes)

# big model
fit1 = glm.mids((hyp==2) ~ age + bmi + chl, data=imput, family = binomial)

一度に 1 つの変数を削除するネストされたモデルごとに完全なモデルをテストすることにより、モデル内の各因子変数全体(各レベルの指標変数ではない)の有意性をテストしたいと考えています。手動で、私はできる:

# small model (no chl)
fit2 = glm.mids((hyp==2) ~ age + bmi, data=imput, family = binomial)

# extract p-value from pool.compare
pool.compare(fit1, fit2)$pvalue

モデル内のすべての因子変数に対してこれを自動的に行うにはどうすればよいですか? 以前の質問で非常に役立つ関数drop1が提案されました。ケースを除いて、まさにそのようなことをしたいと思います。mice

おそらく役に立つメモ:の厄介な機能はpool.compare、大きなモデルの「余分な」変数を、小さなモデルと共有される変数の後に配置するように見えることです。

4

1 に答える 1

4

に必要な順序で予測子を配置した後、ループを使用して、予測子のさまざまな組み合わせを反復処理できますpool.compare

上記のデータを使用してfake、カテゴリの数を微調整しました

library(mice)
library(Hmisc)
# turn all the variables into factors
# turn all the variables into factors
fake <- nhanes
fake$age <- as.factor(nhanes$age)
fake$bmi <- cut2(nhanes$bmi, g=2) 
fake$chl <- cut2(nhanes$chl, g=2) 

# Impute
imput <- mice(fake, seed=1)

# Create models 
# - reduced models with one variable removed
# - full models with extra variables at end of expression
vars <- c("age", "bmi", "chl")

red <- combn(vars, length(vars)-1 , simplify=FALSE)
diffs <- lapply(red, function(i) setdiff(vars, i) )
(full <- lapply(1:length(red), function(i) 
                            paste(c(red[[i]], diffs[[i]]), collapse=" + ")))
#[[1]]
#[1] "age + bmi + chl"

#[[2]]
#[1] "age + chl + bmi"

#[[3]]
#[1] "bmi + chl + age"

(red <- combn(vars, length(vars)-1 , FUN=paste, collapse=" + "))
#[1] "age + bmi" "age + chl" "bmi + chl"

モデルが正しい順序で呼び出しに渡されるようになりましたglmglm.midsメソッドが置き換えられたため、メソッドも置き換えましたwith.mids-参照?glm.mids

out <- vector("list", length(red))

for( i in 1:length(red)) {

  redMod <-  with(imput, 
               glm(formula(paste("(hyp==2) ~ ", red[[i]])), family = binomial))

  fullMod <-  with(imput, 
               glm(formula(paste("(hyp==2) ~ ", full[[i]])), family = binomial))

  out[[i]] <- list(predictors = diffs[[i]], 
                   pval = c(pool.compare(fullMod, redMod)$pvalue))
   }

do.call(rbind.data.frame, out)
#    predictors      pval
#2         chl 0.9976629
#21        bmi 0.9985028
#3         age 0.9815831

# Check manually by leaving out chl
mod1 <- with(imput, glm((hyp==2) ~ age + bmi + chl , family = binomial))
mod2 <- with(imput, glm((hyp==2) ~ age + bmi , family = binomial))
pool.compare(mod1, mod2)$pvalue
#         [,1]
#[1,] 0.9976629

このデータセットを使用すると、多くの警告が表示されます

編集

これを関数でラップできます

impGlmDrop1 <- function(vars, outcome, Data=imput,  Family="binomial") 
{

  red <- combn(vars, length(vars)-1 , simplify=FALSE)
  diffs <- lapply(red, function(i) setdiff(vars, i))
  full <- lapply(1:length(red), function(i) 
                      paste(c(red[[i]], diffs[[i]]), collapse=" + "))
  red <- combn(vars, length(vars)-1 , FUN=paste, collapse=" + ")

  out <- vector("list", length(red))
  for( i in 1:length(red)) {

  redMod <-  with(Data, 
              glm(formula(paste(outcome, red[[i]], sep="~")), family = Family))
  fullMod <-  with(Data, 
              glm(formula(paste(outcome, full[[i]], sep="~")), family = Family))
  out[[i]] <- list(predictors = diffs[[i]], 
                   pval = c(pool.compare(fullMod, redMod)$pvalue)  )
  }
  do.call(rbind.data.frame, out)
}

# Run
impGlmDrop1(c("age", "bmi", "chl"), "(hyp==2)")
于 2014-10-29T07:15:58.537 に答える