GF (2 4 )の乗法逆数のテーブル ルックアップを作成する必要があります。私はすでに掛け算の九九を書きましたが、それを再び行うことを楽しみにしていません. これが私が例として書いた表です。誰もこれを二度と書く必要がないことを願っています。私はばかだと感じました。
GF (2 4 )上の乗算表
// Multiplication table over Galois Field 2^4
byte mulTable[][] = {
{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0xa, 0xb, 0xc, 0xd, 0xe, 0xf},
{0, 2, 4, 6, 8, 0xa, 0xc, 0xe, 3, 1, 7, 5, 0xb, 9, 0xf, 0xd},
{0, 3, 6, 5, 0xc, 0xf, 0xa, 9, 0xb, 8, 0xd, 0xe, 7, 4, 1, 2},
{0, 4, 8, 0xc, 3, 7, 0xb, 0xf, 6, 2, 0xe, 0xa, 5, 1, 0xd, 9},
{0, 5, 0xa, 0xf, 7, 2, 0xd, 8, 0xe, 0xb, 4, 1, 9, 0xc, 3, 6},
{0, 6, 0xc, 0xa, 0xb, 0xd, 7, 1, 5, 3, 9, 0xf, 0xe, 8, 2, 4},
{0, 7, 0xe, 9, 0xf, 8, 1, 6, 0xd, 0xa, 3, 4, 2, 5, 0xc, 0xb},
{0, 8, 3, 0xb, 6, 0xe, 5, 0xd, 0xc, 4, 0xf, 7, 0xa, 2, 9, 1},
{0, 9, 1, 8, 2, 0xb, 3, 0xa, 4, 0xd, 5, 0xc, 6, 0xf, 7, 0xe},
{0, 0xa, 7, 0xd, 0xe, 4, 9, 3, 0xf, 5, 8, 2, 1, 0xb, 0xc, 6},
{0, 0xb, 5, 0xe, 0xa, 1, 0xf, 4, 7, 0xc, 2, 9, 0xd, 6, 8, 3},
{0, 0xc, 0xb, 7, 5, 9, 0xe, 2, 0xa, 6, 1, 0xd, 0xf, 3, 4, 8},
{0, 0xd, 9, 4, 1, 0xc, 8, 5, 2, 0xf, 0xb, 6, 3, 0x3, 0xa, 7},
{0, 0xe, 0xf, 1, 0xd, 3, 2, 0xc, 9, 7, 6, 8, 4, 0xa, 0xb, 5},
{0, 0xf, 0xd, 2, 9, 6, 4, 0xb, 1, 0xe, 0xc, 3, 8, 7, 5, 0xa}
};
逆子はもうやりたくない!
コピーと貼り付けに適したテーブル (できれば Java または C 16x16 配列) を知っている人はいますか? すでに書かれているものを見つけようとしてgithubを検索しましたが、喜びはありませんでした。
動機/合理性
テーブルのルックアップを厳密に行う必要はありませんが、その場でフィールドを生成するためだけに 100 行のコードを追加したくありません (これは単なる見積もりですが、できるとは思えません)より少ない時間でそれを行います)。