26

多くの述語は、基本的に何らかの形式の推移閉包を使用しますが、終了にも対処する必要があることを発見するだけです。これを一度だけ永遠に解決してみませんかclosure0/3:

:- meta_predicate closure0(2,?,?).
:- meta_predicate closure(2,?,?).

:- meta_predicate closure0(2,?,?,+). % internal

closure0(R_2, X0,X) :-
   closure0(R_2, X0,X, [X0]).

closure(R_2, X0,X) :-
   call(R_2, X0,X1),
   closure0(R_2, X1,X, [X1,X0]).

closure0(_R_2, X,X, _).
closure0(R_2, X0,X, Xs) :-
   call(R_2, X0,X1),
   non_member(X1, Xs),
   closure0(R_2, X1,X, [X1|Xs]).

non_member(_E, []).
non_member(E, [X|Xs]) :-
   dif(E,X),
   non_member(E, Xs).

この定義を推移閉包の実装に使用できない場合はありますか?


なぜ dif/2 なのですか?

@WouterBeek のコメントに詳細に答えるには: dif/2oriso_dif/2は、潜在的な問題を表示または通知できるため、理想的です。ただし、現在の実装では、トップレベルのループが実際の問題を隠していることがよくあります。closure0(\_^_^true,a,b)確かにそれ自体が非常に問題のある目標を考えてみましょう。次のシステムを使用する場合、実際の問題は直接目に見えません。

| ?- closure0(\_^_^true,a,b). % SICStus
yes

?- closure0(\_^_^true,a,b).   % SWI
true ;
true ;
true ...

どちらの最上位ループも、実際に見たいもの、つまりダングリング制約を示していません。SICStus では、置換を生成するために疑似変数が必要です。SWI では、クエリを でラップする必要がありますcall_residue_vars/2。このようにして、制約が付加されているすべての変数が表示されるようになりました。

| ?- closure0(\_^_^true,a,b), Alt=t. % SICStus
Alt = t ? ;
Alt = t,
prolog:dif(_A,a),
prolog:dif(b,_A) ? ;
Alt = t,
prolog:dif(_A,a),
prolog:dif(_B,_A),
prolog:dif(_B,a),
prolog:dif(b,_B),
prolog:dif(b,_A) ...

?- call_residue_vars(closure0(\_^_^true,a,b),Vs). % SWI
Vs = [] ;
Vs = [_G1744, _G1747, _G1750],
dif(_G1744, a),
dif(b, _G1744) ;
Vs = [_G1915, _G1918, _G1921, _G1924, _G1927, _G1930, _G1933],
dif(_G1915, a),
dif(b, _G1915),
dif(_G1921, _G1915),
dif(_G1921, a),
dif(b, _G1921) ...
4

1 に答える 1

19

便利ですが、作成時に重複したパスをカットできないため、私の意見ではまだ理想的ではありません。

完全なグラフK_nで考えてみましょう:

n_complete(N, Es) :-
    numlist(1, N, Ns),
    phrase(pairs(Ns), Es).

adjacent(Edges, X, Y) :- member(edge(X, Y), Edges).

pairs([]) --> [].
pairs([N|Ns]) --> edges(Ns, N), pairs(Ns).

edges([], _) --> [].
edges([N|Ns], X) --> [edge(X,N),edge(N,X)], edges(Ns, X).

次のクエリの実行時間は超指数関数的になりましたが、クロージャーは実際には多項式時間で見つけることができます。

?- length(_, N), n_complete(N, Es), portray_clause(N),
   time(findall(Y, closure0(adjacent(Es), 1, Y), Ys)),
   false.
1.
16 inferences, 0.000 CPU in 0.000 seconds (97% CPU, 1982161 Lips)
2.
54 inferences, 0.000 CPU in 0.000 seconds (98% CPU, 4548901 Lips)
3.
259 inferences, 0.000 CPU in 0.000 seconds (97% CPU, 14499244 Lips)
4.
1,479 inferences, 0.000 CPU in 0.000 seconds (100% CPU, 16219595 Lips)
5.
9,599 inferences, 0.000 CPU in 0.000 seconds (100% CPU, 27691393 Lips)
6.
70,465 inferences, 0.002 CPU in 0.002 seconds (100% CPU, 28911161 Lips)
7.
581,283 inferences, 0.020 CPU in 0.020 seconds (100% CPU, 29397339 Lips)
8.
5,343,059 inferences, 0.181 CPU in 0.181 seconds (100% CPU, 29488001 Lips)
9.
54,252,559 inferences, 1.809 CPU in 1.808 seconds (100% CPU, 29994536 Lips)
10.
603,682,989 inferences, 19.870 CPU in 19.865 seconds (100% CPU, 30381451 Lips)

閉鎖を決定するためのより効率的な方法も、このメタ述語で表現できれば素晴らしいことです。

たとえば、次のようなコードを使用して、単純にウォーシャルのアルゴリズムを使用して立方時間でクロージャーを計算します。

node_edges_closure(Node, Edges, Closure) :-
        warshall_fixpoint(Edges, [Node], Closure).

warshall_fixpoint(Edges, Nodes0, Closure) :-
        findall(Y, (member(X, Nodes0), adjacent(Edges, X, Y)), Nodes1, Nodes0),
        sort(Nodes1, Nodes),
        (   Nodes == Nodes0 -> Closure = Nodes0
        ;   warshall_fixpoint(Edges, Nodes, Closure)
        ).

降伏 (適切な宣言と比較してすべての欠点を伴うclosure0/3):

?- length(_, N), n_complete(N, Es), portray_clause(N),
   time(node_edges_closure(1, Es, Ys)),
   false.
1.
% 16 inferences, 0.000 CPU in 0.000 seconds (75% CPU, 533333 Lips)
2.
% 43 inferences, 0.000 CPU in 0.000 seconds (85% CPU, 1228571 Lips)
3.
% 69 inferences, 0.000 CPU in 0.000 seconds (85% CPU, 1769231 Lips)
4.
% 115 inferences, 0.000 CPU in 0.000 seconds (89% CPU, 2346939 Lips)
5.
% 187 inferences, 0.000 CPU in 0.000 seconds (91% CPU, 2968254 Lips)
6.
% 291 inferences, 0.000 CPU in 0.000 seconds (92% CPU, 3548780 Lips)
7.
% 433 inferences, 0.000 CPU in 0.000 seconds (95% CPU, 3866071 Lips)
8.
% 619 inferences, 0.000 CPU in 0.000 seconds (96% CPU, 4268966 Lips)
9.
% 855 inferences, 0.000 CPU in 0.000 seconds (97% CPU, 4500000 Lips)
10.
% 1,147 inferences, 0.000 CPU in 0.000 seconds (98% CPU, 4720165 Lips)
etc.
于 2014-11-19T15:38:40.927 に答える