私はStanで最尤最適化を使用していますが、残念ながらoptimizing()
関数は標準エラーを報告しません:
> MLb4c <- optimizing(get_stanmodel(fitb4c), data = win.data, init = inits)
STAN OPTIMIZATION COMMAND (LBFGS)
init = user
save_iterations = 1
init_alpha = 0.001
tol_obj = 1e-012
tol_grad = 1e-008
tol_param = 1e-008
tol_rel_obj = 10000
tol_rel_grad = 1e+007
history_size = 5
seed = 292156286
initial log joint probability = -4038.66
Iter log prob ||dx|| ||grad|| alpha alpha0 # evals Notes
13 -2772.49 9.21091e-005 0.0135987 0.07606 0.9845 15
Optimization terminated normally:
Convergence detected: relative gradient magnitude is below tolerance
> t2 <- proc.time()
> print(t2 - t1)
user system elapsed
0.11 0.19 0.74
>
> MLb4c
$par
psi alpha beta
0.9495000 0.4350983 -0.2016895
$value
[1] -2772.489
> summary(MLb4c)
Length Class Mode
par 3 -none- numeric
value 1 -none- numeric
推定値 (または信頼区間 - 変位値) の標準誤差と、場合によっては p 値を取得するにはどうすればよいですか?
編集: @Ben Goodrichから親切にアドバイスされました:
> MLb4cH <- optimizing(get_stanmodel(fitb4c), data = win.data, init = inits, hessian = TRUE)
> sqrt(diag(solve(-MLb4cH$hessian)))
psi alpha beta
0.21138314 0.03251696 0.03270493
しかし、これらの「制約のない」標準誤差は、実際のものとは大きく異なるようですstan()
。
> print(outb4c, dig = 5)
Inference for Stan model: tmp_stan_model.
3 chains, each with iter=500; warmup=250; thin=1;
post-warmup draws per chain=250, total post-warmup draws=750.
mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat
alpha 0.43594 0.00127 0.03103 0.37426 0.41578 0.43592 0.45633 0.49915 594 1.00176
beta -0.20262 0.00170 0.03167 -0.26640 -0.22290 -0.20242 -0.18290 -0.13501 345 1.00402
psi 0.94905 0.00047 0.01005 0.92821 0.94308 0.94991 0.95656 0.96632 448 1.00083
lp__ -2776.94451 0.06594 1.15674 -2780.07437 -2777.50643 -2776.67139 -2776.09064 -2775.61263 308 1.01220