最近の就職の面接で、私は次の問題を与えられました:
コマンドラインで実行できるスクリプトをPythonとして記述します
コマンドラインで2語を使用する必要があります(または、必要に応じて、コンソールを介して2語を入力するようにユーザーに問い合わせることができます)。
これらの2つの単語を考えると:a。それらが同じ長さであることを確認してくださいb。ダウンロードした英語の有効な単語の辞書に両方とも存在する単語であることを確認してください。
その場合、次の一連の手順で最初の単語から2番目の単語に到達できるかどうかを計算します。一度に1文字ずつ変更できますb。文字を変更するたびに、結果の単語も辞書に存在する必要がありますc。文字を追加または削除することはできません
2つの単語が到達可能である場合、スクリプトは、1つの単語から別の単語への単一の最短パスとしてつながるパスを出力する必要があります。
単語の辞書に/usr/ share / dict/wordsを使用できます。
私の解決策は、幅優先探索を使用して2つの単語間の最短経路を見つけることでした。しかし、どうやらそれは仕事を得るのに十分ではありませんでした:(
君たちは私が間違ったことをしたかもしれないことを知っていますか?どうもありがとう。
import collections
import functools
import re
def time_func(func):
import time
def wrapper(*args, **kwargs):
start = time.time()
res = func(*args, **kwargs)
timed = time.time() - start
setattr(wrapper, 'time_taken', timed)
return res
functools.update_wrapper(wrapper, func)
return wrapper
class OneLetterGame:
def __init__(self, dict_path):
self.dict_path = dict_path
self.words = set()
def run(self, start_word, end_word):
'''Runs the one letter game with the given start and end words.
'''
assert len(start_word) == len(end_word), \
'Start word and end word must of the same length.'
self.read_dict(len(start_word))
path = self.shortest_path(start_word, end_word)
if not path:
print 'There is no path between %s and %s (took %.2f sec.)' % (
start_word, end_word, find_shortest_path.time_taken)
else:
print 'The shortest path (found in %.2f sec.) is:\n=> %s' % (
self.shortest_path.time_taken, ' -- '.join(path))
def _bfs(self, start):
'''Implementation of breadth first search as a generator.
The portion of the graph to explore is given on demand using get_neighboors.
Care was taken so that a vertex / node is explored only once.
'''
queue = collections.deque([(None, start)])
inqueue = set([start])
while queue:
parent, node = queue.popleft()
yield parent, node
new = set(self.get_neighbours(node)) - inqueue
inqueue = inqueue | new
queue.extend([(node, child) for child in new])
@time_func
def shortest_path(self, start, end):
'''Returns the shortest path from start to end using bfs.
'''
assert start in self.words, 'Start word not in dictionnary.'
assert end in self.words, 'End word not in dictionnary.'
paths = {None: []}
for parent, child in self._bfs(start):
paths[child] = paths[parent] + [child]
if child == end:
return paths[child]
return None
def get_neighbours(self, word):
'''Gets every word one letter away from the a given word.
We do not keep these words in memory because bfs accesses
a given vertex only once.
'''
neighbours = []
p_word = ['^' + word[0:i] + '\w' + word[i+1:] + '$'
for i, w in enumerate(word)]
p_word = '|'.join(p_word)
for w in self.words:
if w != word and re.match(p_word, w, re.I|re.U):
neighbours += [w]
return neighbours
def read_dict(self, size):
'''Loads every word of a specific size from the dictionnary into memory.
'''
for l in open(self.dict_path):
l = l.decode('latin-1').strip().lower()
if len(l) == size:
self.words.add(l)
if __name__ == '__main__':
import sys
if len(sys.argv) not in [3, 4]:
print 'Usage: python one_letter_game.py start_word end_word'
else:
g = OneLetterGame(dict_path = '/usr/share/dict/words')
try:
g.run(*sys.argv[1:])
except AssertionError, e:
print e
すべての素晴らしい答えをありがとう。私が本当に得たのは、辞書内のすべての単語を毎回繰り返して、隣接する可能性のある単語を検討しているという事実だと思います。代わりに、DuncanとMattAndersonが指摘した転置インデックスを使用することもできました。*アプローチも間違いなく役に立ちました。どうもありがとう、今私は自分が間違ったことを知っています。
転置インデックスを使用した同じコードを次に示します。
import collections
import functools
import re
def time_func(func):
import time
def wrapper(*args, **kwargs):
start = time.time()
res = func(*args, **kwargs)
timed = time.time() - start
setattr(wrapper, 'time_taken', timed)
return res
functools.update_wrapper(wrapper, func)
return wrapper
class OneLetterGame:
def __init__(self, dict_path):
self.dict_path = dict_path
self.words = {}
def run(self, start_word, end_word):
'''Runs the one letter game with the given start and end words.
'''
assert len(start_word) == len(end_word), \
'Start word and end word must of the same length.'
self.read_dict(len(start_word))
path = self.shortest_path(start_word, end_word)
if not path:
print 'There is no path between %s and %s (took %.2f sec.)' % (
start_word, end_word, self.shortest_path.time_taken)
else:
print 'The shortest path (found in %.2f sec.) is:\n=> %s' % (
self.shortest_path.time_taken, ' -- '.join(path))
def _bfs(self, start):
'''Implementation of breadth first search as a generator.
The portion of the graph to explore is given on demand using get_neighboors.
Care was taken so that a vertex / node is explored only once.
'''
queue = collections.deque([(None, start)])
inqueue = set([start])
while queue:
parent, node = queue.popleft()
yield parent, node
new = set(self.get_neighbours(node)) - inqueue
inqueue = inqueue | new
queue.extend([(node, child) for child in new])
@time_func
def shortest_path(self, start, end):
'''Returns the shortest path from start to end using bfs.
'''
assert self.in_dictionnary(start), 'Start word not in dictionnary.'
assert self.in_dictionnary(end), 'End word not in dictionnary.'
paths = {None: []}
for parent, child in self._bfs(start):
paths[child] = paths[parent] + [child]
if child == end:
return paths[child]
return None
def in_dictionnary(self, word):
for s in self.get_steps(word):
if s in self.words:
return True
return False
def get_neighbours(self, word):
'''Gets every word one letter away from the a given word.
'''
for step in self.get_steps(word):
for neighbour in self.words[step]:
yield neighbour
def get_steps(self, word):
return (word[0:i] + '*' + word[i+1:]
for i, w in enumerate(word))
def read_dict(self, size):
'''Loads every word of a specific size from the dictionnary into an inverted index.
'''
for w in open(self.dict_path):
w = w.decode('latin-1').strip().lower()
if len(w) != size:
continue
for step in self.get_steps(w):
if step not in self.words:
self.words[step] = []
self.words[step].append(w)
if __name__ == '__main__':
import sys
if len(sys.argv) not in [3, 4]:
print 'Usage: python one_letter_game.py start_word end_word'
else:
g = OneLetterGame(dict_path = '/usr/share/dict/words')
try:
g.run(*sys.argv[1:])
except AssertionError, e:
print e
そしてタイミングの比較:
%python one_letter_game_old.py happy hello最短パス(91.57秒で見つかりました)は次のとおりです:
=> happy --harpy --harps --harts --halts --halls --hells --hello%python one_letter_game.py happy hello最短パス(1.71秒で見つかりました)は次のとおりです:
=> happy --harpy --harps --harts --halts --halls --hells --hello