18

私は最適化問題を解いており、特にフロー ネットワークを最大化する必要があります。Sedgewick の本「Algorithms in Java, Third Edition, Part 5: Graph Algorithms」に掲載されている次のJava コードに基づいて、C++ コード ベースのフロー最大化アルゴリズムを実装しました。これは、頂点ベースの PREFLOW を使用してネットワーク フローを最大化します。プッシュ アルゴリズム:

class NetworkMaxFlow
{ private Network G; private int s, t;
  private int[] h, wt;
  private void initheights()
  NetworkMaxFlow(Network G, int s, int t)
  { this.G = G; this.s = s; this.t = t;
    wt = new int[G.V()]; h = new int[G.V()];
    initheights();
    intGQ gQ = new intGQ(G.V());
    gQ.put(s); wt[t] = -(wt[s] = Edge.M*G.V());
    while (!gQ.empty())
    { int v = gQ.get();
      AdjList A = G.getAdjList(v);
      for (Edge e = A.beg(); !A.end(); e = A.nxt())
        { int w = e.other(v), cap = e.capRto(w);
          int P = cap < wt[v] ? cap : wt[v];
          if (P > 0 && v == s || h[v] == h[w]+1) // first observation (see below)
            { e.addflowRto(w, P);
              wt[v] -= P; wt[w] += P;
              if ((w != s) && (w != t)) gQ.put(w); // enqueue w if it is not source or sink
            }
        }
      if (v != s && v != t && wt[v] > 0) // why check v != t if t never enter the queue?
        { h[v]++; gQ.put(v); }
    }
  }
}

私の実装は、そのコードに基づいて、次のネットワークを最大化できません 容量ネットワーク;  すべての流れはゼロです 実行後のフローは次のよう になります この前のネットの最終状態 フローでは、フローの値は 8 ですが、最大値は 9 です。 最大流量私の理解では、アルゴリズムは本の説明と一致しています。しかし、私は2つの奇妙なものを見ます

  1. ソースからの明示的なプリフロー フェーズはありません。これは に含まれwhile、述語P > 0 && v == sが true の場合に最初に 1 回だけ実行されます。多分これはコードを短くするために行われた
  2. 私の理解と本書の言説によれば、シンクはキューに入ることはありません。ただし、高さが増加すると、コードは v != t であることを確認します。これには何か理由がありますか?

これは、C++ でのこのアルゴリズムの実装からの抜粋です。

template <class Net, class Q_Type> typename Net::Flow_Type
generic_preflow_vertex_push_maximum_flow(Net & net)
{
  init_height_in_nodes(net); // breadth first traverse from sink to
                 // source. Nodes are labeled with their
                 // minimal distance (in nodes) to sink
  auto source = net.get_source();
  auto sink   = net.get_sink();

  using Itor = __Net_Iterator<Net>;
  Q_Type q; // generic queue (can be fifo, heap or random) of active nodes

  // preflow: floods all nodes connected to the source 
  for (Itor it(source); it.has_curr(); it.next()) 
    {
      auto arc  = it.get_curr();  
      arc->flow = arc->cap; // saturate arc to its maximum 
      auto tgt = net.get_tgt_node(arc);
      put_in_active_queue(q, tgt);
      assert(node_height<Net>(source) == node_height<Net>(tgt) + 1);
      assert(not is_residual<Net>(source, arc));
    }

  while (not q.is_empty()) // while there are active nodes
    {
      auto src = get_from_active_queue(q);
      auto excess = net.get_in_flow(src) - net.get_out_flow(src);

      for (Itor it(src); it.has_curr(); it.next()) 
        {
          auto arc = it.get_curr();
          auto tgt = net.get_connected_node(arc, src);

          if (node_height<Net>(src) != node_height<Net>(tgt) + 1)
            continue; // this arc is not eligible

          typename Net::Flow_Type flow_to_push;
          if (is_residual<Net>(src, arc))
            {
              flow_to_push = std::min(arc->flow, excess);
              arc->flow -= flow_to_push;
            }
          else
            {
              flow_to_push = std::min(arc->cap - arc->flow, excess);
              arc->flow += flow_to_push;
            }

          excess -= flow_to_push;
          if (tgt != sink and tgt != source)
            put_in_active_queue(q, tgt);
        }

    if (excess > 0) // src still active?
      { 
        node_height<Net>(src)++;
        put_in_active_queue(q, src);
      }
  }

  return net.flow_value(); // sum of all outing flow from source
}

私のコードと Sedgewick のコードの間に論理的な矛盾を見つけた人はいますか? 私のコード (およびおそらく Sedgewick も) が高さの増加を適切に処理していないという印象があります。しかし、私はその理由を理解することができません

最大化に失敗したネットワークの詳細な実行トレースを示します (トレースは while の最初の q.get() から始まります。括弧内の値は高さの値です。IN はノードへの着信フローです。OUT は来るもの。

例として、ライン

    4104 (2) --> 0 (1) pushing 1 from 4104 toward 0

適格アーク 4104-->0 を参照します。ノード4104の高さは2であり、ノード0の高さは1である。「1を押す」という表現は、1単位のフローが目的のノード(0)に向かって押されることを意味する。行================は、各キュー抽出を区切ります。キューは FIFO であり、その状態は各処理の最後に出力されます。

多くの場合、ゼロ フロー ユニットがプッシュまたは削減されますが、宛先ノードがアクティブになることに注意してください。

これは実行トレースです

Initial Queue = 4104 4105 4106 4107 4108

Active node 4104 Height = 2 IN = 1 OUT = 0
    4104 (2) --> source (3) not eligible
    4104 (2) --> 0 (1) pushing 1 from 4104 toward 0
    4104 (2) --> 1 (1) pushing 0 from 4104 toward 1
    4104 (2) --> 2 (1) pushing 0 from 4104 toward 2
    4104 (2) --> 4 (1) pushing 0 from 4104 toward 4
    Excess = 0
    Queue = 4105 4106 4107 4108 0 1 2 4
================
Active node 4105 Height = 2 IN = 3 OUT = 0
    4105 (2) --> source (3) not eligible
    4105 (2) --> 1 (1) pushing 1 from 4105 toward 1
    4105 (2) --> 4 (1) pushing 1 from 4105 toward 4
    4105 (2) --> 6 (1) pushing 1 from 4105 toward 6
    Excess = 0
    Queue = 4106 4107 4108 0 1 2 4 6
================
Active node 4106 Height = 2 IN = 1 OUT = 0
    4106 (2) --> source (3) not eligible
    4106 (2) --> 1 (1) pushing 1 from 4106 toward 1
    4106 (2) --> 5 (1) pushing 0 from 4106 toward 5
    Excess = 0
    Queue = 4107 4108 0 1 2 4 6 5
================
Active node 4107 Height = 2 IN = 1 OUT = 0
    4107 (2) --> source (3) not eligible
    4107 (2) --> 1 (1) pushing 1 from 4107 toward 1
    4107 (2) --> 2 (1) pushing 0 from 4107 toward 2
    4107 (2) --> 3 (1) pushing 0 from 4107 toward 3
    4107 (2) --> 4 (1) pushing 0 from 4107 toward 4
    4107 (2) --> 6 (1) pushing 0 from 4107 toward 6
    Excess = 0
    Queue = 4108 0 1 2 4 6 5 3
================
Active node 4108 Height = 2 IN = 3 OUT = 0
    4108 (2) --> source (3) not eligible
    4108 (2) --> 1 (1) pushing 1 from 4108 toward 1
    4108 (2) --> 2 (1) pushing 1 from 4108 toward 2
    4108 (2) --> 4 (1) pushing 1 from 4108 toward 4
    4108 (2) --> 5 (1) pushing 0 from 4108 toward 5
    4108 (2) --> 6 (1) pushing 0 from 4108 toward 6
    Excess = 0
    Queue = 0 1 2 4 6 5 3
================
Active node 0 Height = 1 IN = 1 OUT = 0
    0 (1) --> sink (0) pushing 1 from 0 toward sink
    0 (1) --> 4104 (2) not eligible
    Excess = 0
    Queue = 1 2 4 6 5 3
================
Active node 1 Height = 1 IN = 4 OUT = 0
    1 (1) --> sink (0) pushing 2 from 1 toward sink
    1 (1) --> 4105 (2) not eligible
    1 (1) --> 4106 (2) not eligible
    1 (1) --> 4107 (2) not eligible
    1 (1) --> 4108 (2) not eligible
    Excess = 2    1 goes back onto queue with label 2
    Queue = 2 4 6 5 3 1
================
Active node 2 Height = 1 IN = 1 OUT = 0
    2 (1) --> sink (0) pushing 1 from 2 toward sink
    2 (1) --> 4108 (2) not eligible
    Excess = 0
    Queue = 4 6 5 3 1
================
Active node 4 Height = 1 IN = 2 OUT = 0
    4 (1) --> sink (0) pushing 2 from 4 toward sink
    4 (1) --> 4105 (2) not eligible
    4 (1) --> 4108 (2) not eligible
    Excess = 0
    Queue = 6 5 3 1
================
Active node 6 Height = 1 IN = 1 OUT = 0
    6 (1) --> sink (0) pushing 1 from 6 toward sink
    6 (1) --> 4105 (2) not eligible
    Excess = 0
    Queue = 5 3 1
================
Active node 5 Height = 1 IN = 0 OUT = 0
    5 (1) --> sink (0) pushing 0 from 5 toward sink
    Excess = 0
    Queue = 3 1
================
Active node 3 Height = 1 IN = 0 OUT = 0
    3 (1) --> sink (0) pushing 0 from 3 toward sink
    Excess = 0
    Queue = 1
================
Active node 1 Height = 2 IN = 4 OUT = 2
    1 (2) --> 4105 (2) not eligible
    1 (2) --> 4106 (2) not eligible
    1 (2) --> 4107 (2) not eligible
    1 (2) --> 4108 (2) not eligible
    Excess = 2    1 goes back onto queue with label 3
    Queue = 1
================
Active node 1 Height = 3 IN = 4 OUT = 2
    1 (3) --> 4105 (2) Reducing 1 from 1 toward 4105
    1 (3) --> 4106 (2) Reducing 1 from 1 toward 4106
    1 (3) --> 4107 (2) Reducing 0 from 1 toward 4107
    1 (3) --> 4108 (2) Reducing 0 from 1 toward 4108
    Excess = 0
    Queue = 4105 4106 4107 4108
================
Active node 4105 Height = 2 IN = 3 OUT = 2
    4105 (2) --> source (3) not eligible
    4105 (2) --> 1 (3) not eligible
    Excess = 1    4105 goes back onto queue with label 3
    Queue = 4106 4107 4108 4105
================
Active node 4106 Height = 2 IN = 1 OUT = 0
    4106 (2) --> source (3) not eligible
    4106 (2) --> 1 (3) not eligible
    4106 (2) --> 5 (1) pushing 1 from 4106 toward 5
    Excess = 0
    Queue = 4107 4108 4105 5
================
Active node 4107 Height = 2 IN = 1 OUT = 1
    4107 (2) --> source (3) not eligible
    4107 (2) --> 2 (1) pushing 0 from 4107 toward 2
    4107 (2) --> 3 (1) pushing 0 from 4107 toward 3
    4107 (2) --> 4 (1) pushing 0 from 4107 toward 4
    4107 (2) --> 6 (1) pushing 0 from 4107 toward 6
    Excess = 0
    Queue = 4108 4105 5 2 3 4 6
================
Active node 4108 Height = 2 IN = 3 OUT = 3
    4108 (2) --> source (3) not eligible
    4108 (2) --> 5 (1) pushing 0 from 4108 toward 5
    4108 (2) --> 6 (1) pushing 0 from 4108 toward 6
    Excess = 0
    Queue = 4105 5 2 3 4 6
================
Active node 4105 Height = 3 IN = 3 OUT = 2
    4105 (3) --> source (3) not eligible
    4105 (3) --> 1 (3) not eligible
    Excess = 1    4105 goes back onto queue with label 4
    Queue = 5 2 3 4 6 4105
================
Active node 5 Height = 1 IN = 1 OUT = 0
    5 (1) --> sink (0) pushing 1 from 5 toward sink
    5 (1) --> 4106 (2) not eligible
    Excess = 0
    Queue = 2 3 4 6 4105
================
Active node 2 Height = 1 IN = 1 OUT = 1
    2 (1) --> sink (0) pushing 0 from 2 toward sink
    2 (1) --> 4108 (2) not eligible
    Excess = 0
    Queue = 3 4 6 4105
================
Active node 3 Height = 1 IN = 0 OUT = 0
    3 (1) --> sink (0) pushing 0 from 3 toward sink
    Excess = 0
    Queue = 4 6 4105
================
Active node 4 Height = 1 IN = 2 OUT = 2
    4 (1) --> 4105 (4) not eligible
    4 (1) --> 4108 (2) not eligible
    Excess = 0
    Queue = 6 4105
================
Active node 6 Height = 1 IN = 1 OUT = 1
    6 (1) --> sink (0) pushing 0 from 6 toward sink
    6 (1) --> 4105 (4) not eligible
    Excess = 0
    Queue = 4105
================
Active node 4105 Height = 4 IN = 3 OUT = 2
    4105 (4) --> source (3) Reducing 1 from 4105 toward source
    4105 (4) --> 1 (3) pushing 0 from 4105 toward 1
    Excess = 0
    Queue = 1
================
Active node 1 Height = 3 IN = 2 OUT = 2
    1 (3) --> 4107 (2) Reducing 0 from 1 toward 4107
    1 (3) --> 4108 (2) Reducing 0 from 1 toward 4108
    Excess = 0
    Queue = 4107 4108
================
Active node 4107 Height = 2 IN = 1 OUT = 1
    4107 (2) --> source (3) not eligible
    4107 (2) --> 2 (1) pushing 0 from 4107 toward 2
    4107 (2) --> 3 (1) pushing 0 from 4107 toward 3
    4107 (2) --> 4 (1) pushing 0 from 4107 toward 4
    4107 (2) --> 6 (1) pushing 0 from 4107 toward 6
    Excess = 0
    Queue = 4108 2 3 4 6
================
Active node 4108 Height = 2 IN = 3 OUT = 3
    4108 (2) --> source (3) not eligible
    4108 (2) --> 5 (1) pushing 0 from 4108 toward 5
    4108 (2) --> 6 (1) pushing 0 from 4108 toward 6
    Excess = 0
    Queue = 2 3 4 6 5
================
Active node 2 Height = 1 IN = 1 OUT = 1
    2 (1) --> sink (0) pushing 0 from 2 toward sink
    2 (1) --> 4108 (2) not eligible
    Excess = 0
    Queue = 3 4 6 5
================
Active node 3 Height = 1 IN = 0 OUT = 0
    3 (1) --> sink (0) pushing 0 from 3 toward sink
    Excess = 0
    Queue = 4 6 5
================
Active node 4 Height = 1 IN = 2 OUT = 2
    4 (1) --> 4105 (4) not eligible
    4 (1) --> 4108 (2) not eligible
    Excess = 0
    Queue = 6 5
================
Active node 6 Height = 1 IN = 1 OUT = 1
    6 (1) --> sink (0) pushing 0 from 6 toward sink
    6 (1) --> 4105 (4) not eligible
    Excess = 0
    Queue = 5
================
Active node 5 Height = 1 IN = 1 OUT = 1
    5 (1) --> sink (0) pushing 0 from 5 toward sink
    5 (1) --> 4106 (2) not eligible
    Excess = 0
    Queue =
4

1 に答える 1