4

NTRU秘密鍵に対するミートインザミドル攻撃で秘密鍵fのベクトルの列挙を表す方法を誰かが教えてくれるかどうか疑問に思っていました。ここで与えられた例を理解できませんhttp://securityinnovation.com/cryptolab/pdf/NTRUTech004v2.pdf 誰かが例を詳細に示すことができれば、とても感謝しています。

4

1 に答える 1

7

(完全な開示: 私は Security Innovation で働いており、SI に買収されるまで NTRU で働いていました)

警告: 長い答えです!

おもちゃの例を見てみましょう: N = 11, q = 29. df = 3 を取ると、f は 1 に等しい 3 つの係数と 0 に等しい 8 つの係数で構成されます. dg = 5 を取ります. そして、h = g*f と仮定しますf = 1+pF の最適化を使用するのではなく、^{-1} mod p。それから私たちは持っているかもしれません

f = [1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0]
finv = [16, 12, 4, 18, 17, 14, 9, 28, 8, 26, 3]
g = [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]
h = [15, 20, 1, 21, 4, 26, 14, 17, 25, 11, 12]

ここで f*h = g であることを確認できます。

攻撃者は f を見つけたいので、df = 3 のブルート フォース検索を実行できます。攻撃者は、最初の位置に 1 を持つ f のローテーションがあるという事実を利用して、これを高速化できます。 f の他の 2 つの非ゼロ係数の (10 ピック 2) 可能な位置を検索するだけで済みます。彼らが実行する完全な検索は次のとおりです。

           f*h (=g)                                       f
[9, 18, 7, 13, 26, 22, 15, 28, 27, 24, 19]; [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[23, 17, 4, 8, 16, 2, 3, 6, 10, 21, 11]; [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[15, 2, 3, 5, 11, 21, 12, 23, 17, 4, 8]; [1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[12, 23, 17, 4, 8, 16, 2, 3, 5, 11, 20]; [1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[24, 20, 9, 18, 7, 13, 26, 22, 14, 28, 27]; [1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[2, 3, 6, 10, 21, 12, 23, 17, 4, 8, 15]; [1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0]
[19, 10, 18, 7, 13, 26, 22, 14, 28, 27, 24]; [1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0]
[28, 27, 25, 19, 10, 18, 7, 13, 25, 22, 14]; [1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0]
[18, 7, 13, 26, 22, 15, 28, 27, 24, 19, 9]; [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[22, 14, 28, 27, 25, 19, 10, 18, 7, 13, 25]; [1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0]
[14, 28, 27, 24, 20, 9, 19, 6, 14, 25, 22]; [1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0]
[11, 20, 12, 23, 17, 4, 9, 15, 2, 3, 5]; [1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0]
[23, 17, 4, 8, 16, 1, 4, 5, 11, 20, 12]; [1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0]
[1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0]; [1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0]
[18, 7, 13, 26, 22, 14, 0, 26, 25, 19, 9]; [1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0]
[27, 24, 20, 9, 19, 6, 14, 25, 22, 14, 28]; [1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0]
[17, 4, 8, 16, 2, 3, 6, 10, 21, 11, 23]; [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1]
[28, 27, 24, 19, 10, 18, 7, 13, 26, 22, 14]; [1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]
[25, 19, 9, 18, 7, 13, 26, 22, 14, 0, 26]; [1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]
[8, 16, 1, 3, 6, 10, 21, 12, 23, 17, 4]; [1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0]
[15, 28, 27, 24, 20, 9, 18, 7, 13, 26, 21]; [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0]
[3, 6, 10, 21, 12, 23, 17, 4, 8, 16, 1]; [1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0]
[12, 23, 17, 4, 9, 15, 2, 3, 5, 11, 20]; [1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0]
[2, 3, 5, 11, 21, 12, 23, 17, 4, 8, 15]; [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1]
[17, 4, 8, 15, 2, 3, 6, 10, 21, 12, 23]; [1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]
[0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1]; [1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]
[7, 13, 26, 21, 15, 28, 27, 24, 20, 9, 18]; [1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0]
[24, 20, 9, 18, 7, 13, 26, 21, 15, 28, 27]; [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0]
[4, 8, 16, 1, 4, 5, 11, 20, 12, 23, 17]; [1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0]
[23, 17, 4, 8, 16, 2, 3, 5, 11, 20, 12]; [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]
[26, 22, 14, 28, 27, 24, 20, 9, 18, 7, 13]; [1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0]
[4, 5, 11, 20, 12, 23, 17, 4, 8, 16, 1]; [1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0]
[21, 12, 23, 17, 4, 8, 16, 1, 3, 6, 10]; [1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0]
[1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0]; [1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0]
[20, 9, 18, 7, 13, 26, 22, 14, 28, 27, 24]; [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1]
[16, 2, 3, 5, 11, 20, 12, 23, 17, 4, 8]; [1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
[4, 9, 15, 2, 3, 5, 11, 20, 12, 23, 17]; [1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]
[13, 26, 22, 14, 0, 26, 25, 19, 9, 18, 7]; [1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0]
[3, 6, 10, 21, 12, 23, 17, 4, 8, 15, 2]; [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
[11, 21, 12, 23, 17, 4, 8, 15, 2, 3, 5]; [1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0]
[20, 9, 19, 6, 14, 25, 22, 14, 28, 27, 24]; [1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]
[10, 18, 7, 13, 26, 22, 14, 28, 27, 24, 19]; [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]
[8, 16, 2, 3, 6, 10, 21, 11, 23, 17, 4]; [1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0]
[27, 25, 19, 10, 18, 7, 13, 25, 22, 14, 28]; [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]
[7, 13, 26, 22, 15, 28, 27, 24, 19, 9, 18]; [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1]

そこをスキャンすると、g が 45 行のうち 14、26、34 行に表示されていることがわかります。(f には 1 が 3 つあるため、g は 3 回表示されます。したがって、先頭に 1 を持つ f の 3 つの回転があります)。

次に、ミートインザミドル攻撃を見てみましょう。攻撃者は式を使用します

(f1+f2) * h = g

それで

f1*h = g - f2*h

e[i] を使用して e の i 番目の係数を意味すると、これは、攻撃者が次のことを知っていることを意味します。

(f1*h)[i] = - (f2*h)[i] + 0 or 1

したがって、攻撃者は f1*h のすべての可能な値を計算します。結果のリスト {g1} を呼び出します。次に、-f2*h を計算し、各結果 g2 について、g2 が既存の g1 と同じかどうか、またはg2 が任意の g1 と各係数で 1 を超えて異なるかどうかを確認します。言い換えると、

[3, 10, 12, 7]

一致します

[4, 10, 12, 8]

このようにすることで、攻撃者は次の手順を実行するだけで済みます。

  • 先頭位置に 1 があり、それ以外の位置に 1 がある 10 個の f1 すべて
  • 先頭以外の任意の位置に単一の 1 がある 10 個の f2 すべて

これにより、以下が得られます。一致を見つけやすくするために、リストを並べ替えました。

          f1*h = g1                                           f1
[00, 08, 26, 03, 16, 12, 05, 18, 17, 15, 09]     [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[03, 16, 12, 04, 19, 17, 15, 09, 00, 08, 26]     [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[06, 21, 22, 25, 01, 11, 02, 13, 07, 23, 27]     [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[07, 24, 27, 06, 21, 22, 25, 00, 11, 02, 13]     [1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
[11, 02, 13, 07, 24, 27, 06, 21, 22, 25, 00]     [1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[12, 05, 18, 17, 15, 09, 00, 08, 26, 03, 16]     [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[16, 12, 05, 18, 18, 14, 10, 28, 08, 26, 03]     [1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]
[19, 17, 15, 09, 00, 08, 26, 03, 16, 12, 04]     [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
[26, 03, 16, 12, 05, 18, 18, 14, 10, 28, 08]     [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[27, 06, 21, 22, 25, 01, 11, 02, 13, 07, 23]     [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]

         -f2*h = g2                                          f2
[03, 15, 12, 04, 18, 17, 14, 09, 28, 08, 25]     [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[04, 18, 17, 14, 09, 28, 08, 25, 03, 15, 12]     [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
[08, 25, 03, 15, 12, 04, 18, 17, 14, 09, 28]     [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
[09, 28, 08, 25, 03, 15, 12, 04, 18, 17, 14]     [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]
[12, 04, 18, 17, 14, 09, 28, 08, 25, 03, 15]     [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0]
[15, 12, 04, 18, 17, 14, 09, 28, 08, 25, 03]     [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[17, 14, 09, 28, 08, 25, 03, 15, 12, 04, 18]     [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[18, 17, 14, 09, 28, 08, 25, 03, 15, 12, 04]     [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[25, 03, 15, 12, 04, 18, 17, 14, 09, 28, 08]     [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0]
[28, 08, 25, 03, 15, 12, 04, 18, 17, 14, 09]     [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0]

次のことがわかります。

  • g1 の 1 行目は g2 の 10 行目と一致し、[1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0] となります
  • g1 の 2 行目は g2 の 1 行目と一致し、[1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0] を与える
  • g1 の 6 行目は g2 の 5 行目と一致し、[1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0] となります
  • g1 の 7 行目は g2 の 6 行目と一致し、[1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0] となります
  • g1 の 8 行目は g2 の 8 行目と一致し、[1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0] を与える
  • g1 の 9 行目は g2 の 9 行目と一致し、[1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0] となります

先行位置に 1 がある 3 つのローテーションがあり、各ローテーションには他の 2 つの係数を選択する 2 つの方法があるため、ここでは 6 つの衝突があります。

したがって、攻撃者は、ブルート フォース検索でキーを見つけるのに約 45/3 = 15 の作業を行う必要があり、ミート イン ザ ミドル攻撃でキーを見つけるのに約 10 の作業を行う必要があります (ローテーションにより 10 よりわずかに少なくなります)。 、しかし私は手元にきれいな式を持っていません)。

さまざまな最適化がありますが、アイデアを得るにはこれで十分です。

これまで対処してこなかったことの 1 つは、検索時間を短縮する方法です。これを行う簡単な方法は、進行中に結果を並べ替えるだけです。エントリの挿入または競合の検索にかかる時間は、約 log_2 (検索スペースのサイズ) です。あるいは、より多くのメモリを使用することを犠牲にして、g1 の最初のいくつかの係数の可能​​な値ごとにブロックを予約することにより、この検索時間を一定に短縮することができます。

お役に立てれば。ご不明な点がございましたら、お気軽にお問い合わせください。

于 2010-05-05T19:50:45.813 に答える