「汎用フーリエ記述子を使用した形状ベースの画像検索」という名前の論文を見ていますが、フーリエ記述子の基本的な知識しかありません。私はこの論文の 12 ページにあるアルゴリズムを実装しようとしていますが、あまり意味をなさない結果が得られました。
小さな画像を作成し、その画像の FD を計算し、その FD を x 方向と y 方向に 1 ピクセル分変換された同じ画像と比較すると、最初のエントリを除いて、記述子は完全に異なります -これはまったく同じです。まず、問題は、これらの記述子が 2 つの画像間でまったく同じであるべきかどうかです (記述子は明らかにスケール、回転、および平行移動に対して不変であるため)。
第二に、この論文では、2 つの別個の画像の記述子が単純なユークリッド距離によって比較されることに言及しています。したがって、上記の 2 つの記述子間のユークリッド距離をとることにより、ユークリッド距離は明らかに 0 になります。
以下に示すアルゴリズムをテストするために、いくつかの Javascript コードを簡単にまとめました。
前進するための意見、アイデア、方法はありますか?
ありがとう、ポール
var iShape = [
0, 0, 0, 0, 0,
0, 0, 255, 0, 0,
0, 255, 255, 255, 0,
0, 0, 255, 0, 0,
0, 0, 0, 0, 0
];
var ImageWidth = 5, ImageHeight = 5, MaxRFreq = 5, MaxAFreq = 5;
// Calculate centroid
var cX = 0, cY = 0, pCount = 0;
for (x = 0; x < ImageWidth; x++) {
for (y = 0; y < ImageHeight; y++) {
if (iShape[y * ImageWidth + x]) {
cX += x;
cY += y;
pCount++;
}
}
}
cX = cX / pCount;
cY = cY / pCount;
console.log("cX = " + cX + ", cY = " + cY);
// Calculate the maximum radius
var maxR = 0;
for (x = 0; x < ImageWidth; x++) {
for (y = 0; y < ImageHeight; y++) {
if (iShape[y * ImageWidth + x]) {
var r = Math.sqrt(Math.pow(x - cX, 2) + Math.pow(y - cY, 2));
if (r > maxR) {
maxR = r;
}
}
}
}
// Initialise real / imaginary table
var i;
var FR = [ ];
var FI = [ ];
for (r = 0; r < (MaxRFreq); r++) {
var rRow = [ ];
FR.push(rRow);
var aRow = [ ];
FI.push(aRow);
for (a = 0; a < (MaxAFreq); a++) {
rRow.push(0.0);
aRow.push(0.0);
}
}
var rFreq, aFreq, x, y;
for (rFreq = 0; rFreq < MaxRFreq; rFreq++) {
for (aFreq = 0; aFreq < MaxAFreq; aFreq++) {
for (x = 0; x < ImageWidth; x++) {
for (y = 0; y < ImageHeight; y++) {
var radius = Math.sqrt(Math.pow(x - maxR, 2) +
Math.pow(y - maxR, 2));
var theta = Math.atan2(y - maxR, x - maxR);
if (theta < 0.0) {
theta += (2 * Math.PI);
}
var iPixel = iShape[y * ImageWidth + x];
FR[rFreq][aFreq] += iPixel * Math.cos(2 * Math.PI * rFreq *
(radius / maxR) + aFreq * theta);
FI[rFreq][aFreq] -= iPixel * Math.sin(2 * Math.PI * rFreq *
(radius / maxR) + aFreq * theta);
}
}
}
}
// Initialise fourier descriptor table
var FD = [ ];
for (i = 0; i < (MaxRFreq * MaxAFreq); i++) {
FD.push(0.0);
}
// Calculate the fourier descriptor
for (rFreq = 0; rFreq < MaxRFreq; rFreq++) {
for (aFreq = 0; aFreq < MaxAFreq; aFreq++) {
if (rFreq == 0 && aFreq == 0) {
FD[0] = Math.sqrt(Math.pow(FR[0][0], 2) + Math.pow(FR[0][0], 2) /
(Math.PI * maxR * maxR));
} else {
FD[rFreq * MaxAFreq + aFreq] = Math.sqrt(Math.pow(FR[rFreq][aFreq], 2) +
Math.pow(FI[rFreq][aFreq], 2) / FD[0]);
}
}
}
for (i = 0; i < (MaxRFreq * MaxAFreq); i++) {
console.log(FD[i]);
}