Matlab2014b 環境で次の方程式を数値的に解こうとしていますが、matlab は数値解を出力せず、代わりに次のように出力します。
>>solve(1/beta(13,11)*x^(12)*(1-x)^(10)==1.8839,x)
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[1]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[1]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[2]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[2]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[3]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[3]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[4]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[4]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[5]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[5]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[6]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[6]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[7]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[7]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[8]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[8]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[9]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[9]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[10]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[10]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 - (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[11]
RootOf(z^11 - 5*z^10 + 10*z^9 - 10*z^8 + 5*z^7 - z^6 + (4096*10^(1/2)*3342794185613871913^(1/2))/66540040320887625, z)[11]
一方、Wolframath で方程式を解くのは問題ありません。何が問題の原因なのか疑問に思っています。方程式には複雑な解があることに注意する価値があるかもしれませんが、私は0と1の間の解にしか興味がありません.