pymc.__version__ = '3.0'
theano.__version__ = '0.6.0.dev-RELEASE'
複雑な尤度関数で PyMC3 を使用しようとしています:
最初の質問: これは可能ですか?
以下は、 Thomas Wiecki の投稿をガイドとして使用した私の試みです。
import numpy as np
import theano as th
import pymc as pm
import scipy as sp
# Actual data I'm trying to fit
x = np.array([52.08, 58.44, 60.0, 65.0, 65.10, 66.0, 70.0, 87.5, 110.0, 126.0])
y = np.array([0.522, 0.659, 0.462, 0.720, 0.609, 0.696, 0.667, 0.870, 0.889, 0.919])
yerr = np.array([0.104, 0.071, 0.138, 0.035, 0.102, 0.096, 0.136, 0.031, 0.024, 0.035])
th.config.compute_test_value = 'off'
a = th.tensor.dscalar('a')
with pm.Model() as model:
# Priors
alpha = pm.Normal('alpha', mu=0.3, sd=5)
sig_alpha = pm.Normal('sig_alpha', mu=0.03, sd=5)
t_double = pm.Normal('t_double', mu=4, sd=20)
t_delay = pm.Normal('t_delay', mu=21, sd=20)
nu = pm.Uniform('nu', lower=0, upper=20)
# Some functions needed for calculation of the y estimator
def T(eqd):
doses = np.array([52.08, 58.44, 60.0, 65.0, 65.10,
66.0, 70.0, 87.5, 110.0, 126.0])
tmt_times = np.array([29,29,43,29,36,48,22,11,7,8])
return np.interp(eqd, doses, tmt_times)
def TCP(a):
time = T(x)
BCP = pm.exp(-1E7*pm.exp(-alpha*x*1.2 + 0.69315/t_delay(time-t_double)))
return pm.prod(BCP)
def normpdf(a, alpha, sig_alpha):
return 1./(sig_alpha*pm.sqrt(2.*np.pi))*pm.exp(-pm.sqr(a-alpha)/(2*pm.sqr(sig_alpha)))
def normcdf(a, alpha, sig_alpha):
return 1./2.*(1+pm.erf((a-alpha)/(sig_alpha*pm.sqrt(2))))
def integrand(a):
return normpdf(a,alpha,sig_alpha)/(1.-normcdf(0,alpha,sig_alpha))*TCP(a)
func = th.function([a,alpha,sig_alpha,t_double,t_delay], integrand(a))
y_est = sp.integrate.quad(func(a, alpha, sig_alpha,t_double,t_delay), 0, np.inf)[0]
likelihood = pm.T('TCP', mu=y_est, nu=nu, observed=y_tcp)
start = pm.find_MAP()
step = pm.NUTS(state=start)
trace = pm.sample(2000, step, start=start, progressbar=True)
y_est の式に関する次のメッセージが生成されます。
TypeError: ('名前 ":42" のインデックス 0 (0 ベース) の theano 関数への入力引数が正しくありません', '配列のようなオブジェクトが必要でしたが、変数が見つかりました: おそらく、(おそらく共有)数値配列の代わりに変数?')
ここまで来るのに様々なハードルを乗り越えてきましたが、ここが行き詰っています。それで、私の最初の質問への答えが「はい」であるならば、私は正しい方向に進んでいますか? どんなガイダンスも役に立ちます!
注:これは、私が見つけた同様の質問と、別の質問です。
免責事項:私はこれに非常に慣れていません。私の唯一の以前の経験は、Thomas の投稿の線形回帰の例をうまく再現したことです。また、Theano テスト スイートを正常に実行したので、動作することがわかりました。