iPython 2.3.1、OS-X Yosemite 10.10.2
Python print (sys.version):
2.7.6 (デフォルト、2014 年 9 月 9 日 15:04:36)
[GCC 4.2.1 互換 Apple LLVM 6.0 (clang-600.0. 39)]
次のコードは、米国の株式データから取得したデータに対して機能します。たとえば、Intel のセキュリティ ID を "INTC" にします。しかし、ヨーロッパ株のデータにアクセスすると、すべての OHLC データがデータフレームにあるにもかかわらず、ローソク足関数が失敗します。ここに完全なコードを入れて、他の技術分析チャートがヨーロッパの株式データに対してうまくプロットされていることを示します.
import pandas.io.data as web
import pandas as pd
import numpy as np
import talib as ta
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from matplotlib.dates import date2num
from matplotlib.finance import candlestick
import datetime
ticker = 'DNO.L'
# Download sample data
sec_id = web.get_data_yahoo(ticker, '2014-06-01')
# Data for matplotlib finance plot
sec_id_ochl = np.array(pd.DataFrame({'0':date2num(sec_id.index),
'1':sec_id.Open,
'2':sec_id.Close,
'3':sec_id.High,
'4':sec_id.Low}))
# Technical Analysis
SMA_FAST = 50
SMA_SLOW = 200
RSI_PERIOD = 14
RSI_AVG_PERIOD = 15
MACD_FAST = 12
MACD_SLOW = 26
MACD_SIGNAL = 9
STOCH_K = 14
STOCH_D = 3
SIGNAL_TOL = 3
Y_AXIS_SIZE = 12
analysis = pd.DataFrame(index = sec_id.index)
analysis['sma_f'] = pd.rolling_mean(sec_id.Close, SMA_FAST)
analysis['sma_s'] = pd.rolling_mean(sec_id.Close, SMA_SLOW)
analysis['rsi'] = ta.RSI(sec_id.Close.as_matrix(), RSI_PERIOD)
analysis['sma_r'] = pd.rolling_mean(analysis.rsi, RSI_AVG_PERIOD) # check shift
analysis['macd'], analysis['macdSignal'], analysis['macdHist'] = \
ta.MACD(sec_id.Close.as_matrix(), fastperiod=MACD_FAST, slowperiod=MACD_SLOW, signalperiod=MACD_SIGNAL)
analysis['stoch_k'], analysis['stoch_d'] = \
ta.STOCH(sec_id.High.as_matrix(), sec_id.Low.as_matrix(), sec_id.Close.as_matrix(), slowk_period=STOCH_K, slowd_period=STOCH_D)
analysis['sma'] = np.where(analysis.sma_f > analysis.sma_s, 1, 0)
analysis['macd_test'] = np.where((analysis.macd > analysis.macdSignal), 1, 0)
analysis['stoch_k_test'] = np.where((analysis.stoch_k < 50) & (analysis.stoch_k > analysis.stoch_k.shift(1)), 1, 0)
analysis['rsi_test'] = np.where((analysis.rsi < 50) & (analysis.rsi > analysis.rsi.shift(1)), 1, 0)
# Prepare plot
fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, sharex=True)
ax1.set_ylabel(ticker, size=20)
#size plot
fig.set_size_inches(15,30)
# Plot candles
candlestick(ax1, sec_id_ochl, width=0.5, colorup='g', colordown='r', alpha=1)
# Draw Moving Averages
analysis.sma_f.plot(ax=ax1, c='r')
analysis.sma_s.plot(ax=ax1, c='g')
#RSI
ax2.set_ylabel('RSI', size=Y_AXIS_SIZE)
analysis.rsi.plot(ax = ax2, c='g', label = 'Period: ' + str(RSI_PERIOD))
analysis.sma_r.plot(ax = ax2, c='r', label = 'MA: ' + str(RSI_AVG_PERIOD))
ax2.axhline(y=30, c='b')
ax2.axhline(y=50, c='black')
ax2.axhline(y=70, c='b')
ax2.set_ylim([0,100])
handles, labels = ax2.get_legend_handles_labels()
ax2.legend(handles, labels)
# Draw MACD computed with Talib
ax3.set_ylabel('MACD: '+ str(MACD_FAST) + ', ' + str(MACD_SLOW) + ', ' + str(MACD_SIGNAL), size=Y_AXIS_SIZE)
analysis.macd.plot(ax=ax3, color='b', label='Macd')
analysis.macdSignal.plot(ax=ax3, color='g', label='Signal')
analysis.macdHist.plot(ax=ax3, color='r', label='Hist')
ax3.axhline(0, lw=2, color='0')
handles, labels = ax3.get_legend_handles_labels()
ax3.legend(handles, labels)
# Stochastic plot
ax4.set_ylabel('Stoch (k,d)', size=Y_AXIS_SIZE)
analysis.stoch_k.plot(ax=ax4, label='stoch_k:'+ str(STOCH_K), color='r')
analysis.stoch_d.plot(ax=ax4, label='stoch_d:'+ str(STOCH_D), color='g')
handles, labels = ax4.get_legend_handles_labels()
ax4.legend(handles, labels)
ax4.axhline(y=20, c='b')
ax4.axhline(y=50, c='black')
ax4.axhline(y=80, c='b')
plt.show()