0

私はemceeライブラリを使用してモンテカルロマルコフチェーンをクラス内に実装し、マルチプロセッシングモジュールを機能させようとしましたが、そのようなテストコードを実行した後:

import numpy as np
import emcee
import scipy.optimize as op
# Choose the "true" parameters.
m_true = -0.9594
b_true = 4.294
f_true = 0.534

# Generate some synthetic data from the model.
N = 50
x = np.sort(10*np.random.rand(N))
yerr = 0.1+0.5*np.random.rand(N)
y = m_true*x+b_true
y += np.abs(f_true*y) * np.random.randn(N)
y += yerr * np.random.randn(N)

class modelfit():
      def  __init__(self):
          self.x=x
          self.y=y
          self.yerr=yerr
          self.m=-0.6
          self.b=2.0
          self.f=0.9
      def get_results(self):
          def func(a):
              model=a[0]*self.x+a[1]
              inv_sigma2 = 1.0/(self.yerr**2 + model**2*np.exp(2*a[2]))
              return 0.5*(np.sum((self.y-model)**2*inv_sigma2 + np.log(inv_sigma2)))
          result = op.minimize(func, [self.m, self.b, np.log(self.f)],options={'gtol': 1e-6, 'disp': True})
          m_ml, b_ml, lnf_ml = result["x"]
          return result["x"]
      def lnprior(self,theta):
          m, b, lnf = theta
          if -5.0 < m < 0.5 and 0.0 < b < 10.0 and -10.0 < lnf < 1.0:
             return 0.0
          return -np.inf
      def lnprob(self,theta):
          lp = self.lnprior(theta)
          likelihood=self.lnlike(theta)
          if not np.isfinite(lp):
             return -np.inf
          return lp + likelihood
      def lnlike(self,theta):
          m, b, lnf = theta
          model = m * self.x + b
          inv_sigma2 = 1.0/(self.yerr**2 + model**2*np.exp(2*lnf))
          return -0.5*(np.sum((self.y-model)**2*inv_sigma2 - np.log(inv_sigma2)))
      def run_mcmc(self,nstep):
          ndim, nwalkers = 3, 100
          pos = [self.get_results() + 1e-4*np.random.randn(ndim) for i in range(nwalkers)]
          self.sampler = emcee.EnsembleSampler(nwalkers, ndim, self.lnprob,threads=10)
          self.sampler.run_mcmc(pos, nstep)
test=modelfit()
test.x=x
test.y=y
test.yerr=yerr
test.get_results()
test.run_mcmc(5000)

次のエラー メッセージが表示されました。

File "MCMC_model.py", line 157, in run_mcmc
    self.sampler.run_mcmc(theta0, nstep)
  File "build/bdist.linux-x86_64/egg/emcee/sampler.py", line 157, in run_mcmc
  File "build/bdist.linux-x86_64/egg/emcee/ensemble.py", line 198, in sample
  File "build/bdist.linux-x86_64/egg/emcee/ensemble.py", line 382, in _get_lnprob
  File "build/bdist.linux-x86_64/egg/emcee/interruptible_pool.py", line 94, in map
  File "/vol/aibn84/data2/zahra/anaconda/lib/python2.7/multiprocessing/pool.py", line 558, in get
    raise self._value
cPickle.PicklingError: Can't pickle <type 'instancemethod'>: attribute lookup __builtin__.instancemethod failed

クラスでマルチプロセッシングを使用した方法と関係があると思いますが、クラスの構造をそのまま維持し、同時にマルチプロセッシングも使用する方法がわかりませんでした??!!

ヒントをいただければ幸いです。

threads=10PS最後の関数から削除すると、コードが完全に機能することに言及する必要があります。

4

2 に答える 2