25

大きな画像内で既知の画像を見つけるためのアルゴリズム (または検索用語/説明) を知っている人はいますか?

例えば

さまざまなボタンと領域 (ターゲット) を含む単一のデスクトップ ウィンドウの画像があります。現在のデスクトップのスクリーン ショットをキャプチャするコードもあります。より大きなデスクトップ画像内でターゲット画像を見つけるのに役立つアルゴリズムが必要です (ウィンドウが配置されている正確な x 座標と y 座標)。ターゲット画像は大きな画像のどこにでもある可能性があり、100% まったく同じではない可能性があります (OS 表示の違いにより、非常に似ていますが、正確ではない可能性があります)。

そのようなアルゴリズムまたはアルゴリズムのクラスを知っている人はいますか?

さまざまな画像セグメンテーションおよびコンピューター ビジョン アルゴリズムを見つけましたが、それらは領域の「ファジー」分類に対応しており、特定の画像を別の画像内に配置するのではないようです。

**私の目標は、いくつかのシード ターゲット イメージが与えられた場合に、デスクトップを「見て」、ターゲット領域を見つけて、変更を「監視」できるフレームワークを作成することです。**

4

6 に答える 6

12

私が書いた論文を見てください: http://werner.yellowcouch.org/Papers/subimg/index.html . それは非常に詳細であり、サブイメージの発見の問題にフーリエ変換を適用する方法を議論している唯一の記事のようです.

つまり、フーリエ変換を使用する場合は、次の式を適用できます: 画像 A が dx,dy にわたってシフトされたときの画像 A と画像 B の相関は、次の行列で与えられます: C=ifft(fft(A) x 共役(fft(B)) したがって、画像 C 内で最も高い値を持つ位置は、最も高い相関を持ち、その位置は dx,dy を反映します。

この結果は、比較的大きなサブイメージに適しています。小さい画像の場合は、記事で説明されているように、さらに作業が必要です。それにもかかわらず、このようなフーリエ変換は非常に高速です。約 3*sx sy log_2(sx*sy)+3*sx*sy 操作になります。

于 2010-09-26T06:54:37.707 に答える
6

あなたはあなたの画像が完全に同じではないかもしれないと言いましたが、それからあなたは「ファジー」アルゴリズムを望まないと言いました。それらに互換性があるかどうかはわかりません。ただし、一般的には、画像レジストレーションアルゴリズムを検討したいと思います。いくつかのヒントを提供する可能性のあるITKと呼ばれるオープンソースのC++パッケージがあります。また、 ImageJは人気のあるオープンソースのJavaパッケージです。これらの両方には、あなたがいじくり回す場合に利用可能な少なくともいくつかの登録機能があります。

于 2008-11-18T03:20:16.250 に答える
6

使用するコードのスケルトンは次のとおりです。

// look for all (x,y) positions where target appears in desktop
List<Loc> findMatches(Image desktop, Image target, float threshold) {
  List<Loc> locs;
  for (int y=0; y<desktop.height()-target.height(); y++) {
      for (int x=0; x<desktop.width()-target.width(); x++) {
          if (imageDistance(desktop, x, y, target) < threshold) {
              locs.append(Loc(x,y));
          }
      }
   }
   return locs;
}

// computes the root mean squared error between a rectangular window in 
// bigImg and target.
float imageDistance(Image bigImg, int bx, int by, Image target) {
    float sum_dist2 = 0.0;
    for (int y=0; y<target.height(); y++) {
        for (int x=0; x<target.width(); x++) {
            // assume RGB images...
            for (int colorChannel=0; colorChannel<3; colorChannel++) {
                float dist = target.getPixel(x,y) - bigImg.getPixel(bx+x,by+y);
                sum_dist2 += dist * dist;
            }
         }
    }
    return Math.sqrt(sum_dist2 / target.width() / target.height());
}

他の画像距離を検討することもできます (同様の質問を参照してください)。アプリケーションの場合、RMS エラーはおそらく適切な選択です。

この距離を効率的に計算するさまざまな Java ライブラリがおそらくあります。

于 2008-11-18T04:03:40.563 に答える
1

Werner Van Belleの解決策を検討しました(他のすべてのアプローチは信じられないほど遅いため、まったく実用的ではありません):

サブイメージの正確なローカリゼーションのための適応フィルター: FFT ベースのサブイメージ ローカリゼーションには、イメージの正規化が適切に機能する必要があります。

ソリューションが必要なコードを C# で記述しましたが、非常に不正確な結果が得られます。ヴァン・ベルの発言とは裏腹に、本当にうまくいかないのか、それとも私が何か間違ったことをしたのでしょうか。FFTW の C# ラッパーとしてhttps://github.com/tszalay/FFTWSharpを使用しました。

これが私の翻訳されたコードです: (元の C++ はhttp://werner.yellowcouch.org/Papers/subimg/index.htmlにあります)

using System.Diagnostics;
using System;
using System.Runtime.InteropServices;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;

using FFTWSharp;

using unsigned1 = System.Byte;
using signed2 = System.Int16;
using signed8 = System.Int64;

public class Subimage
{
    /**
     * This program finds a subimage in a larger image. It expects two arguments.
     * The first is the image in which it must look. The secon dimage is the
     * image that is to be found. The program relies on a number of different
     * steps to perform the calculation.
     *
     * It will first normalize the input images in order to improve the
     * crosscorrelation matching. Once the best crosscorrelation is found
     * a sad-matchers is applied in a grid over the larger image.
     *
     * The following two article explains the details:
     *
     *   Werner Van Belle; An Adaptive Filter for the Correct Localization
     *   of Subimages: FFT based Subimage Localization Requires Image
     *   Normalization to work properly; 11 pages; October 2007.
     *   http://werner.yellowcouch.org/Papers/subimg/
     *
     *   Werner Van Belle; Correlation between the inproduct and the sum
     *   of absolute differences is -0.8485 for uniform sampled signals on
     *   [-1:1]; November 2006
     */
    unsafe public static Point FindSubimage_fftw(string[] args)
    {
        if (args == null || args.Length != 2)
        {
            Console.Write("Usage: subimg\n" + "\n" + "  subimg is an image matcher. It requires two arguments. The first\n" + "  image should be the larger of the two. The program will search\n" + "  for the best position to superimpose the needle image over the\n" + "  haystack image. The output of the the program are the X and Y\n" + "  coordinates.\n\n" + "  http://werner.yellowouch.org/Papers/subimg/\n");
            return new Point();
        }

        /**
         * The larger image will be called A. The smaller image will be called B.
         *
         * The code below relies heavily upon fftw. The indices necessary for the
         * fast r2c and c2r transforms are at best confusing. Especially regarding
         * the number of rows and colums (watch our for Asx vs Asx2 !).
         *
         * After obtaining all the crosscorrelations we will scan through the image
         * to find the best sad match. As such we make a backup of the original data
         * in advance
         *
         */
        int Asx = 0, Asy = 0;
        signed2[] A = read_image(args[0], ref Asx, ref Asy);
        int Asx2 = Asx / 2 + 1;

        int Bsx = 0, Bsy = 0;
        signed2[] B = read_image(args[1], ref Bsx, ref Bsy);

        unsigned1[] Asad = new unsigned1[Asx * Asy];
        unsigned1[] Bsad = new unsigned1[Bsx * Bsy];

        for (int i = 0; i < Bsx * Bsy; i++)
        {
            Bsad[i] = (unsigned1)B[i];
            Asad[i] = (unsigned1)A[i];
        }
        for (int i = Bsx * Bsy; i < Asx * Asy; i++)
            Asad[i] = (unsigned1)A[i];

        /**
         * Normalization and windowing of the images.
         *
         * The window size (wx,wy) is half the size of the smaller subimage. This
         * is useful to have as much good information from the subimg.
         */
        int wx = Bsx / 2;
        int wy = Bsy / 2;
        normalize(ref B, Bsx, Bsy, wx, wy);
        normalize(ref A, Asx, Asy, wx, wy);

        /**
         * Preparation of the fourier transforms.
         * Aa is the amplitude of image A. Af is the frequence of image A
         * Similar for B. crosscors will hold the crosscorrelations.
         */
        IntPtr Aa = fftw.malloc(sizeof(double) * Asx * Asy);
        IntPtr Af = fftw.malloc(sizeof(double) * 2 * Asx2 * Asy);
        IntPtr Ba = fftw.malloc(sizeof(double) * Asx * Asy);
        IntPtr Bf = fftw.malloc(sizeof(double) * 2 * Asx2 * Asy);

        /**
         * The forward transform of A goes from Aa to Af
         * The forward tansform of B goes from Ba to Bf
         * In Bf we will also calculate the inproduct of Af and Bf
         * The backward transform then goes from Bf to Aa again. That
         * variable is aliased as crosscors;
         */
        //#original: fftw_plan_dft_r2c_2d
        //IntPtr forwardA = fftwf.dft(2, new int[] { Asy, Asx }, Aa, Af, fftw_direction.Forward, fftw_flags.Estimate);//equal results
        IntPtr forwardA = fftwf.dft_r2c_2d(Asy, Asx, Aa, Af, fftw_flags.Estimate);
        //#original: fftw_plan_dft_r2c_2d
        //IntPtr forwardB = fftwf.dft(2, new int[] { Asy, Asx }, Ba, Bf, fftw_direction.Forward, fftw_flags.Estimate);//equal results
        IntPtr forwardB = fftwf.dft_r2c_2d(Asy, Asx, Ba, Bf, fftw_flags.Estimate);
        double* crosscorrs = (double*)Aa;
        //#original: fftw_plan_dft_c2r_2d
        //IntPtr backward = fftwf.dft(2, new int[] { Asy, Asx }, Bf, Aa, fftw_direction.Backward, fftw_flags.Estimate);//equal results
        IntPtr backward = fftwf.dft_c2r_2d(Asy, Asx, Bf, Aa, fftw_flags.Estimate);

        /**
         * The two forward transforms of A and B. Before we do so we copy the normalized
         * data into the double array. For B we also pad the data with 0
         */
        for (int row = 0; row < Asy; row++)
            for (int col = 0; col < Asx; col++)
                ((double*)Aa)[col + Asx * row] = A[col + Asx * row];
        fftw.execute(forwardA);

        for (int j = 0; j < Asx * Asy; j++)
            ((double*)Ba)[j] = 0;
        for (int row = 0; row < Bsy; row++)
            for (int col = 0; col < Bsx; col++)
                ((double*)Ba)[col + Asx * row] = B[col + Bsx * row];
        fftw.execute(forwardB);

        /**
         * The inproduct of the two frequency domains and calculation
         * of the crosscorrelations
         */
        double norm = Asx * Asy;
        for (int j = 0; j < Asx2 * Asy; j++)
        {
            double a = ((double*)Af)[j * 2];//#Af[j][0];
            double b = ((double*)Af)[j * 2 + 1];//#Af[j][1];
            double c = ((double*)Bf)[j * 2];//#Bf[j][0];
            double d = ((double*)Bf)[j * 2 + 1];//#-Bf[j][1];
            double e = a * c - b * d;
            double f = a * d + b * c;
            ((double*)Bf)[j * 2] = (double)(e / norm);//#Bf[j][0] = (fftw_real)(e / norm);
            ((double*)Bf)[j * 2 + 1] = (double)(f / norm);//Bf[j][1] = (fftw_real)(f / norm);
        }
        fftw.execute(backward);

        /**
         * We now have a correlation map. We can spent one more pass
         * over the entire image to actually find the best matching images
         * as defined by the SAD.
         * We calculate this by gridding the entire image according to the
         * size of the subimage. In each cel we want to know what the best
         * match is.
         */
        int sa = 1 + Asx / Bsx;
        int sb = 1 + Asy / Bsy;
        int sadx = 0;
        int sady = 0;
        signed8 minsad = Bsx * Bsy * 256L;
        for (int a = 0; a < sa; a++)
        {
            int xl = a * Bsx;
            int xr = xl + Bsx;
            if (xr > Asx) continue;
            for (int b = 0; b < sb; b++)
            {
                int yl = b * Bsy;
                int yr = yl + Bsy;
                if (yr > Asy) continue;

                // find the maximum correlation in this cell
                int cormxat = xl + yl * Asx;
                double cormx = crosscorrs[cormxat];
                for (int x = xl; x < xr; x++)
                    for (int y = yl; y < yr; y++)
                    {
                        int j = x + y * Asx;
                        if (crosscorrs[j] > cormx)
                            cormx = crosscorrs[cormxat = j];
                    }
                int corx = cormxat % Asx;
                int cory = cormxat / Asx;

                // We dont want subimages that fall of the larger image
                if (corx + Bsx > Asx) continue;
                if (cory + Bsy > Asy) continue;

                signed8 sad = 0;
                for (int x = 0; sad < minsad && x < Bsx; x++)
                    for (int y = 0; y < Bsy; y++)
                    {
                        int j = (x + corx) + (y + cory) * Asx;
                        int i = x + y * Bsx;
                        sad += Math.Abs((int)Bsad[i] - (int)Asad[j]);
                    }

                if (sad < minsad)
                {
                    minsad = sad;
                    sadx = corx;
                    sady = cory;
                    // printf("* ");
                }
                // printf("Grid (%d,%d) (%d,%d) Sip=%g Sad=%lld\n",a,b,corx,cory,cormx,sad);
            }
        }
        //Console.Write("{0:D}\t{1:D}\n", sadx, sady);
        /**
         * Aa, Ba, Af and Bf were allocated in this function
         * crosscorrs was an alias for Aa and does not require deletion.
         */
        fftw.free(Aa);
        fftw.free(Ba);
        fftw.free(Af);
        fftw.free(Bf);
        return new Point(sadx, sady);
    }

    private static void normalize(ref signed2[] img, int sx, int sy, int wx, int wy)
    {
        /**
         * Calculate the mean background. We will subtract this
         * from img to make sure that it has a mean of zero
         * over a window size of wx x wy. Afterwards we calculate
         * the square of the difference, which will then be used
         * to normalize the local variance of img.
         */
        signed2[] mean = boxaverage(img, sx, sy, wx, wy);
        signed2[] sqr = new signed2[sx * sy];
        for (int j = 0; j < sx * sy; j++)
        {
            img[j] -= mean[j];
            signed2 v = img[j];
            sqr[j] = (signed2)(v * v);
        }
        signed2[] var = boxaverage(sqr, sx, sy, wx, wy);
        /**
         * The normalization process. Currenlty still
         * calculated as doubles. Could probably be fixed
         * to integers too. The only problem is the sqrt
         */
        for (int j = 0; j < sx * sy; j++)
        {
            double v = Math.Sqrt(Math.Abs((double)var[j]));//#double v = sqrt(fabs(var[j])); <- ambigous
            Debug.Assert(!double.IsInfinity(v) && v >= 0);
            if (v < 0.0001) v = 0.0001;
            img[j] = (signed2)(img[j] * (32 / v));
            if (img[j] > 127) img[j] = 127;
            if (img[j] < -127) img[j] = -127;
        }
        /**
         * As a last step in the normalization we
         * window the sub image around the borders
         * to become 0
         */
        window(ref img, sx, sy, wx, wy);
    }

    private static signed2[] boxaverage(signed2[] input, int sx, int sy, int wx, int wy)
    {
        signed2[] horizontalmean = new signed2[sx * sy];

        Debug.Assert(horizontalmean != null);
        int wx2 = wx / 2;
        int wy2 = wy / 2;
        int from = (sy - 1) * sx;
        int to = (sy - 1) * sx;
        int initcount = wx - wx2;
        if (sx < initcount) initcount = sx;
        int xli = -wx2;
        int xri = wx - wx2;
        for (; from >= 0; from -= sx, to -= sx)
        {
            signed8 sum = 0;
            int count = initcount;
            for (int c = 0; c < count; c++)
                sum += (signed8)input[c + from];
            horizontalmean[to] = (signed2)(sum / count);
            int xl = xli, x = 1, xr = xri;
            /**
             * The area where the window is slightly outside the
             * left boundary. Beware: the right bnoundary could be
             * outside on the other side already
             */
            for (; x < sx; x++, xl++, xr++)
            {
                if (xl >= 0) break;
                if (xr < sx)
                {
                    sum += (signed8)input[xr + from];
                    count++;
                }
                horizontalmean[x + to] = (signed2)(sum / count);
            }
            /**
             * both bounds of the sliding window
             * are fully inside the images
             */
            for (; xr < sx; x++, xl++, xr++)
            {
                sum -= (signed8)input[xl + from];
                sum += (signed8)input[xr + from];
                horizontalmean[x + to] = (signed2)(sum / count);
            }
            /**
             * the right bound is falling of the page
             */
            for (; x < sx; x++, xl++)
            {
                sum -= (signed8)input[xl + from];
                count--;
                horizontalmean[x + to] = (signed2)(sum / count);
            }
        }

        /**
         * The same process as aboe but for the vertical dimension now
         */
        int ssy = (sy - 1) * sx + 1;
        from = sx - 1;
        signed2[] verticalmean = new signed2[sx * sy];
        Debug.Assert(verticalmean != null);
        to = sx - 1;
        initcount = wy - wy2;
        if (sy < initcount) initcount = sy;
        int initstopat = initcount * sx;
        int yli = -wy2 * sx;
        int yri = (wy - wy2) * sx;
        for (; from >= 0; from--, to--)
        {
            signed8 sum = 0;
            int count = initcount;
            for (int d = 0; d < initstopat; d += sx)
                sum += (signed8)horizontalmean[d + from];
            verticalmean[to] = (signed2)(sum / count);
            int yl = yli, y = 1, yr = yri;
            for (; y < ssy; y += sx, yl += sx, yr += sx)
            {
                if (yl >= 0) break;
                if (yr < ssy)
                {
                    sum += (signed8)horizontalmean[yr + from];
                    count++;
                }
                verticalmean[y + to] = (signed2)(sum / count);
            }
            for (; yr < ssy; y += sx, yl += sx, yr += sx)
            {
                sum -= (signed8)horizontalmean[yl + from];
                sum += (signed8)horizontalmean[yr + from];
                verticalmean[y + to] = (signed2)(sum / count);
            }
            for (; y < ssy; y += sx, yl += sx)
            {
                sum -= (signed8)horizontalmean[yl + from];
                count--;
                verticalmean[y + to] = (signed2)(sum / count);
            }
        }
        return verticalmean;
    }

    private static void window(ref signed2[] img, int sx, int sy, int wx, int wy)
    {
        int wx2 = wx / 2;
        int sxsy = sx * sy;
        int sx1 = sx - 1;
        for (int x = 0; x < wx2; x++)
            for (int y = 0; y < sxsy; y += sx)
            {
                img[x + y] = (signed2)(img[x + y] * x / wx2);
                img[sx1 - x + y] = (signed2)(img[sx1 - x + y] * x / wx2);
            }

        int wy2 = wy / 2;
        int syb = (sy - 1) * sx;
        int syt = 0;
        for (int y = 0; y < wy2; y++)
        {
            for (int x = 0; x < sx; x++)
            {
                /**
                 * here we need to recalculate the stuff (*y/wy2)
                 * to preserve the discrete nature of integers.
                 */
                img[x + syt] = (signed2)(img[x + syt] * y / wy2);
                img[x + syb] = (signed2)(img[x + syb] * y / wy2);
            }
            /**
             * The next row for the top rows
             * The previous row for the bottom rows
             */
            syt += sx;
            syb -= sx;
        }
    }

    private static signed2[] read_image(string filename, ref int sx, ref int sy)
    {
        Bitmap image = new Bitmap(filename);
        sx = image.Width;
        sy = image.Height;
        signed2[] GreyImage = new signed2[sx * sy];
        BitmapData bitmapData1 = image.LockBits(new Rectangle(0, 0, image.Width, image.Height), ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb);
        unsafe
        {
            byte* imagePointer = (byte*)bitmapData1.Scan0;

            for (int y = 0; y < bitmapData1.Height; y++)
            {
                for (int x = 0; x < bitmapData1.Width; x++)
                {
                    GreyImage[x + y * sx] = (signed2)((imagePointer[0] + imagePointer[1] + imagePointer[2]) / 3.0);
                    //4 bytes per pixel
                    imagePointer += 4;
                }//end for x
                //4 bytes per pixel
                imagePointer += bitmapData1.Stride - (bitmapData1.Width * 4);
            }//end for y
        }//end unsafe
        image.UnlockBits(bitmapData1);
        return GreyImage;
    }
}
于 2014-03-12T11:30:25.177 に答える