誰かがここで助けてくれることを願っています。
大きなバイト ベクトルがあり、そこから小さなバイト ベクトル (マスクに基づく) を作成し、それを simd で処理します。
現在、マスクは baseOffset + submask (byte[256]) の配列であり、 > 10^8 があるため、ストレージ用に最適化されています。maxsize サブベクトルを作成し、マスク配列をループ処理して baseOffsset を 256 倍し、マスクのビット オフセットごとに大きなベクトルから読み込み、小さなベクトルに値を順番に入れます。小さい方のベクトルは、多数の VPMADDUBSW を介して処理され、累積されます。この構造を変えることができます。たとえば、ビットを 1 回ウォークして 8K ビット配列バッファを使用し、小さなベクトルを作成します。
サブアレイを作成するより速い方法はありますか?
アプリからコードを取り出してテスト プログラムに入れましたが、元のコードは流動的な状態です (AVX2 に移行し、C# からさらに引き出しています)。
#include "stdafx.h"
#include<stdio.h>
#include <mmintrin.h>
#include <emmintrin.h>
#include <tmmintrin.h>
#include <smmintrin.h>
#include <immintrin.h>
//from
char N[4096] = { 9, 5, 5, 5, 9, 5, 5, 5, 5, 5 };
//W
char W[4096] = { 1, 2, -3, 5, 5, 5, 5, 5, 5, 5 };
char buffer[4096] ;
__declspec(align(2))
struct packed_destination{
char blockOffset;
__int8 bitMask[32];
};
__m128i sum = _mm_setzero_si128();
packed_destination packed_destinations[10];
void process128(__m128i u, __m128i s)
{
__m128i calc = _mm_maddubs_epi16(u, s); // pmaddubsw
__m128i loints = _mm_cvtepi16_epi32(calc);
__m128i hiints = _mm_cvtepi16_epi32(_mm_shuffle_epi32(calc, 0x4e));
sum = _mm_add_epi32(_mm_add_epi32(loints, hiints), sum);
}
void process_array(char n[], char w[], int length)
{
sum = _mm_setzero_si128();
int length128th = length >> 7;
for (int i = 0; i < length128th; i++)
{
__m128i u = _mm_load_si128((__m128i*)&n[i * 128]);
__m128i s = _mm_load_si128((__m128i*)&w[i * 128]);
process128(u, s);
}
}
void populate_buffer_from_vector(packed_destination packed_destinations[], char n[] , int dest_length)
{
int buffer_dest_index = 0;
for (int i = 0; i < dest_length; i++)
{
int blockOffset = packed_destinations[i].blockOffset <<8 ;
// go through mask and copy to buffer
for (int j = 0; j < 32; j++)
{
int joffset = blockOffset + j << 3;
int mask = packed_destinations[i].bitMask[j];
if (mask & 1 << 0)
buffer[buffer_dest_index++] = n[joffset + 1<<0 ];
if (mask & 1 << 1)
buffer[buffer_dest_index++] = n[joffset + 1<<1];
if (mask & 1 << 2)
buffer[buffer_dest_index++] = n[joffset + 1<<2];
if (mask & 1 << 3)
buffer[buffer_dest_index++] = n[joffset + 1<<3];
if (mask & 1 << 4)
buffer[buffer_dest_index++] = n[joffset + 1<<4];
if (mask & 1 << 5)
buffer[buffer_dest_index++] = n[joffset + 1<<5];
if (mask & 1 << 6)
buffer[buffer_dest_index++] = n[joffset + 1<<6];
if (mask & 1 << 7)
buffer[buffer_dest_index++] = n[joffset + 1<<7];
};
}
}
int _tmain(int argc, _TCHAR* argv[])
{
for (int i = 0; i < 32; ++i)
{
packed_destinations[0].bitMask[i] = 0x0f;
packed_destinations[1].bitMask[i] = 0x04;
}
packed_destinations[1].blockOffset = 1;
populate_buffer_from_vector(packed_destinations, N, 1);
process_array(buffer, W, 256);
int val = sum.m128i_i32[0] +
sum.m128i_i32[1] +
sum.m128i_i32[2] +
sum.m128i_i32[3];
printf("sum is %d" , val);
printf("Press Any Key to Continue\n");
getchar();
return 0;
}
通常、一部のワークロードではマスクの使用率は 5 ~ 15% で、25 ~ 100% になります。
MASKMOVDQU は近いですが、保存する前にマスクに従って /swl を再パックする必要があります..