このコードは、ゲームのコンセプトをいじるために少し前に書きました。関与する知的な行動はありません。ゲームをデモンストレーションするためのランダムな動き。勝利条件の迅速なチェックのみを探しているので、これは重要ではないと思います。for ループを回避し、組み込みの python/numpy 関数のみを (いくつかのトリックを使用して) 使用するように最善を尽くしたため、この実装は高速です。
import numpy as np
row_size = 6
col_size = 7
symbols = {1:'A', -1:'B', 0:' '}
def was_winning_move(S, P, current_row_idx,current_col_idx):
#****** Column Win ******
current_col = S[:,current_col_idx]
P_idx= np.where(current_col== P)[0]
#if the difference between indexes are one, that means they are consecutive.
#we need at least 4 consecutive index. So 3 Ture value
is_idx_consecutive = sum(np.diff(P_idx)==1)>=3
if is_idx_consecutive:
return True
#****** Column Win ******
current_row = S[current_row_idx,:]
P_idx= np.where(current_row== P)[0]
is_idx_consecutive = sum(np.diff(P_idx)==1)>=3
if is_idx_consecutive:
return True
#****** Diag Win ******
offeset_from_diag = current_col_idx - current_row_idx
current_diag = S.diagonal(offeset_from_diag)
P_idx= np.where(current_diag== P)[0]
is_idx_consecutive = sum(np.diff(P_idx)==1)>=3
if is_idx_consecutive:
return True
#****** off-Diag Win ******
#here 1) reverse rows, 2)find new index, 3)find offest and proceed as diag
reversed_rows = S[::-1,:] #1
new_row_idx = row_size - 1 - current_row_idx #2
offeset_from_diag = current_col_idx - new_row_idx #3
current_off_diag = reversed_rows.diagonal(offeset_from_diag)
P_idx= np.where(current_off_diag== P)[0]
is_idx_consecutive = sum(np.diff(P_idx)==1)>=3
if is_idx_consecutive:
return True
return False
def move_at_random(S,P):
selected_col_idx = np.random.permutation(range(col_size))[0]
#print selected_col_idx
#we should fill in matrix from bottom to top. So find the last filled row in col and fill the upper row
last_filled_row = np.where(S[:,selected_col_idx] != 0)[0]
#it is possible that there is no filled array. like the begining of the game
#in this case we start with last row e.g row : -1
if last_filled_row.size != 0:
current_row_idx = last_filled_row[0] - 1
else:
current_row_idx = -1
#print 'col[{0}], row[{1}]'.format(selected_col,current_row)
S[current_row_idx, selected_col_idx] = P
return (S,current_row_idx,selected_col_idx)
def move_still_possible(S):
return not (S[S==0].size == 0)
def print_game_state(S):
B = np.copy(S).astype(object)
for n in [-1, 0, 1]:
B[B==n] = symbols[n]
print B
def play_game():
#initiate game state
game_state = np.zeros((6,7),dtype=int)
player = 1
mvcntr = 1
no_winner_yet = True
while no_winner_yet and move_still_possible(game_state):
#get player symbol
name = symbols[player]
game_state, current_row, current_col = move_at_random(game_state, player)
#print '******',player,(current_row, current_col)
#print current game state
print_game_state(game_state)
#check if the move was a winning move
if was_winning_move(game_state,player,current_row, current_col):
print 'player %s wins after %d moves' % (name, mvcntr)
no_winner_yet = False
# switch player and increase move counter
player *= -1
mvcntr += 1
if no_winner_yet:
print 'game ended in a draw'
player = 0
return game_state,player,mvcntr
if __name__ == '__main__':
S, P, mvcntr = play_game()
ご質問があればお知らせください
更新:説明:
各移動で、現在のセルを通過する列、行、対角線、および二次対角線を見て、現在のシンボルで連続するセルを見つけます。ボード全体をスキャンすることは避けてください。

各方向のセルの抽出:
桁:
current_col = S[:,current_col_idx]
行:
current_row = S[current_row_idx,:]
対角線: 主対角線から目的の対角線のオフセットを見つけます。
diag_offset = current_col_idx - current_row_idx
current_diag = S.diagonal(offset)
非対角:
行列の行を逆にします。
S_reversed_rows = S[::-1,:]
新しいマトリックスの行インデックスを見つけます
new_row_idx = row_size - 1 - current_row_idx
current_offdiag = S.diagonal(offset)
