私はストリームに似たものを書いてきました。各ファンクターの法則を証明することはできますが、それが合計であることを証明する方法がわかりません。
module Stream
import Classes.Verified
%default total
codata MyStream a = MkStream a (MyStream a)
mapStream : (a -> b) -> MyStream a -> MyStream b
mapStream f (MkStream a s) = MkStream (f a) (mapStream f s)
streamFunctorComposition : (s : MyStream a) -> (f : a -> b) -> (g : b -> c) -> mapStream (\x => g (f x)) s = mapStream g (mapStream f s)
streamFunctorComposition (MkStream x y) f g =
let inductiveHypothesis = streamFunctorComposition y f g
in ?streamFunctorCompositionStepCase
---------- Proofs ----------
streamFunctorCompositionStepCase = proof
intros
rewrite inductiveHypothesis
trivial
与えます:
*Stream> :total streamFunctorComposition
Stream.streamFunctorComposition is possibly not total due to recursive path:
Stream.streamFunctorComposition, Stream.streamFunctorComposition
全体性チェッカーも通過するcodataに対するファンクターの法則を証明するトリックはありますか?