18

最近、私の質問は、そうでなくても、このように重複としてマークされました。それでは、以下から始めましょう。次に、質問について説明します。

この質問が重複していないのはなぜですか?

inorder および preorder トラバーサルが与えられたときにバイナリ ツリーを作成する方法を尋ねているわけではありません。inorder+preorder トラバーサルが一意のバイナリ ツリーを定義するという証拠を求めています。

さて、元の質問に。私は面接に行き、面接官は私にこの質問をしました。行き詰まり、先に進めませんでした。:|

質問: バイナリ ツリーの順不同および順順トラバーサルが与えられました。与えられたデータに対して二分木が 1 つしか存在しないことを証明してください。言い換えれば、2 つの異なる二分木が同じ inorder および preorder トラバーサルを持つことはできないことを証明してください。ツリー内のすべての要素が一意であると仮定します (この仮定を指摘してくれた @envy_intelligence に感謝します)。

例を使ってインタビュアーを説得しようとしましたが、インタビュアーは数学的/直感的な証明を求めていました。誰かがそれを証明するのを手伝ってくれますか?

4

4 に答える 4

13

事前注文トラバーサルから始めます。空である場合は完了です。またはr0、ツリーのルートである最初の要素 があります。次に、 inorder トラバーサルで を検索しますr0。左のサブツリーはすべてそのポイントの前に来て、右のサブツリーはすべてそのポイントの後に来ます。したがって、その時点での順不同トラバーサルを、左サブツリーilの順トラバーサルと右サブツリーの順トラバーサルに分割できますir

が空の場合il、残りの事前注文トラバーサルは右側のサブツリーに属し、帰納的に続行できます。が空の場合ir、反対側でも同じことが起こります。どちらも空でない場合はir、残りの先行順序探索で の最初の要素を見つけます。これにより、左側のサブツリーの事前順トラバーサルと右側のサブツリーの 1 つに分割されます。誘導は即時です。

正式な証明に興味がある人のために、私は (ついに) Idris で作成することができました。しかし、私はそれをひどく読みやすくするために時間をかけていなかったので、実際にはその多くを読むのはかなり難しい. トップレベルの型 (つまり、補題、定理、定義) を主に見て、証明 (用語) に行き詰まりすぎないようにすることをお勧めします。

最初にいくつかの準備事項:

module PreIn
import Data.List
%default total

さて、最初の本当のアイデアは二分木です。

data Tree : Type -> Type where
  Tip : Tree a
  Node : (l : Tree a) -> (v : a) -> (r : Tree a) -> Tree a
%name Tree t, u

2 番目の大きなアイデアは、特定のツリー内の特定の要素を見つける方法のアイデアです。これは、特定のリスト内の特定の要素を見つける方法を表すElemタイプ inに密接に基づいています。Data.List

data InTree : a -> Tree a -> Type where
  AtRoot : x `InTree` (Node l x r)
  OnLeft : x `InTree` l -> x `InTree` (Node l v r)
  OnRight : x `InTree` r -> x `InTree` (Node l v r)

それから、恐ろしい補題がたくさんあります。そのうちのいくつかは、それについての私の質問への回答でEric Mertens ( glguy )によって提案されました。

恐ろしいレンマ

size : Tree a -> Nat
size Tip = Z
size (Node l v r) = size l + (S Z + size r)

onLeftInjective : OnLeft p = OnLeft q -> p = q
onLeftInjective Refl = Refl

onRightInjective : OnRight p = OnRight q -> p = q
onRightInjective Refl = Refl

inorder : Tree a -> List a
inorder Tip = []
inorder (Node l v r) = inorder l ++ [v] ++ inorder r

instance Uninhabited (Here = There y) where
  uninhabited Refl impossible

instance Uninhabited (x `InTree` Tip) where
  uninhabited AtRoot impossible

elemAppend : {x : a} -> (ys,xs : List a) -> x `Elem` xs -> x `Elem` (ys ++ xs)
elemAppend [] xs xInxs = xInxs
elemAppend (y :: ys) xs xInxs = There (elemAppend ys xs xInxs)

appendElem : {x : a} -> (xs,ys : List a) -> x `Elem` xs -> x `Elem` (xs ++ ys)
appendElem (x :: zs) ys Here = Here
appendElem (y :: zs) ys (There pr) = There (appendElem zs ys pr)

tThenInorder : {x : a} -> (t : Tree a) -> x `InTree` t -> x `Elem` inorder t
tThenInorder (Node l x r) AtRoot = elemAppend _ _ Here
tThenInorder (Node l v r) (OnLeft pr) = appendElem _ _ (tThenInorder _ pr)
tThenInorder (Node l v r) (OnRight pr) = elemAppend _ _ (There (tThenInorder _ pr))

listSplit_lem : (x,z : a) -> (xs,ys:List a) -> Either (x `Elem` xs) (x `Elem` ys)
  -> Either (x `Elem` (z :: xs)) (x `Elem` ys)
listSplit_lem x z xs ys (Left prf) = Left (There prf)
listSplit_lem x z xs ys (Right prf) = Right prf


listSplit : {x : a} -> (xs,ys : List a) -> x `Elem` (xs ++ ys) -> Either (x `Elem` xs) (x `Elem` ys)
listSplit [] ys xelem = Right xelem
listSplit (z :: xs) ys Here = Left Here
listSplit {x} (z :: xs) ys (There pr) = listSplit_lem x z xs ys (listSplit xs ys pr)

mutual
  inorderThenT : {x : a} -> (t : Tree a) -> x `Elem` inorder t -> InTree x t
  inorderThenT Tip xInL = absurd xInL
  inorderThenT {x} (Node l v r) xInL = inorderThenT_lem x l v r xInL (listSplit (inorder l) (v :: inorder r) xInL)

  inorderThenT_lem : (x : a) ->
                     (l : Tree a) -> (v : a) -> (r : Tree a) ->
                     x `Elem` inorder (Node l v r) ->
                     Either (x `Elem` inorder l) (x `Elem` (v :: inorder r)) ->
                     InTree x (Node l v r)
  inorderThenT_lem x l v r xInL (Left locl) = OnLeft (inorderThenT l locl)
  inorderThenT_lem x l x r xInL (Right Here) = AtRoot
  inorderThenT_lem x l v r xInL (Right (There locr)) = OnRight (inorderThenT r locr)

unsplitRight : {x : a} -> (e : x `Elem` ys) -> listSplit xs ys (elemAppend xs ys e) = Right e
unsplitRight {xs = []} e = Refl
unsplitRight {xs = (x :: xs)} e = rewrite unsplitRight {xs} e in Refl

unsplitLeft : {x : a} -> (e : x `Elem` xs) -> listSplit xs ys (appendElem xs ys e) = Left e
unsplitLeft {xs = []} Here impossible
unsplitLeft {xs = (x :: xs)} Here = Refl
unsplitLeft {xs = (x :: xs)} {ys} (There pr) =
  rewrite unsplitLeft {xs} {ys} pr in Refl

splitLeft_lem1 : (Left (There w) = listSplit_lem x y xs ys (listSplit xs ys z)) ->
                 (Left w = listSplit xs ys z) 

splitLeft_lem1 {w} {xs} {ys} {z} prf with (listSplit xs ys z)
  splitLeft_lem1 {w}  Refl | (Left w) = Refl
  splitLeft_lem1 {w}  Refl | (Right s) impossible

splitLeft_lem2 : Left Here = listSplit_lem x x xs ys (listSplit xs ys z) -> Void
splitLeft_lem2 {x} {xs} {ys} {z} prf with (listSplit xs ys z)
  splitLeft_lem2 {x = x} {xs = xs} {ys = ys} {z = z} Refl | (Left y) impossible
  splitLeft_lem2 {x = x} {xs = xs} {ys = ys} {z = z} Refl | (Right y) impossible

splitLeft : {x : a} -> (xs,ys : List a) ->
            (loc : x `Elem` (xs ++ ys)) ->
            Left e = listSplit {x} xs ys loc ->
            appendElem {x} xs ys e = loc
splitLeft {e} [] ys loc prf = absurd e
splitLeft (x :: xs) ys Here prf = rewrite leftInjective prf in Refl
splitLeft {e = Here} (x :: xs) ys (There z) prf = absurd (splitLeft_lem2 prf)
splitLeft {e = (There w)} (y :: xs) ys (There z) prf =
  cong $ splitLeft xs ys z (splitLeft_lem1 prf)

splitMiddle_lem3 : Right Here = listSplit_lem y x xs (y :: ys) (listSplit xs (y :: ys) z) ->
                   Right Here = listSplit xs (y :: ys) z

splitMiddle_lem3 {y} {x} {xs} {ys} {z} prf with (listSplit xs (y :: ys) z)
  splitMiddle_lem3 {y = y} {x = x} {xs = xs} {ys = ys} {z = z} Refl | (Left w) impossible
  splitMiddle_lem3 {y = y} {x = x} {xs = xs} {ys = ys} {z = z} prf | (Right w) =
    cong $ rightInjective prf  -- This funny dance strips the Rights off and then puts them
                               -- back on so as to change type.


splitMiddle_lem2 : Right Here = listSplit xs (y :: ys) pl ->
                   elemAppend xs (y :: ys) Here = pl

splitMiddle_lem2 {xs} {y} {ys} {pl} prf with (listSplit xs (y :: ys) pl) proof prpr
  splitMiddle_lem2 {xs = xs} {y = y} {ys = ys} {pl = pl} Refl | (Left loc) impossible
  splitMiddle_lem2 {xs = []} {y = y} {ys = ys} {pl = pl} Refl | (Right Here) = rightInjective prpr
  splitMiddle_lem2 {xs = (x :: xs)} {y = x} {ys = ys} {pl = Here} prf | (Right Here) = (\Refl impossible) prpr
  splitMiddle_lem2 {xs = (x :: xs)} {y = y} {ys = ys} {pl = (There z)} prf | (Right Here) =
    cong $ splitMiddle_lem2 {xs} {y} {ys} {pl = z} (splitMiddle_lem3 prpr)

splitMiddle_lem1 : Right Here = listSplit_lem y x xs (y :: ys) (listSplit xs (y :: ys) pl) ->
                   elemAppend xs (y :: ys) Here = pl

splitMiddle_lem1 {y} {x} {xs} {ys} {pl} prf with (listSplit xs (y :: ys) pl) proof prpr
  splitMiddle_lem1 {y = y} {x = x} {xs = xs} {ys = ys} {pl = pl} Refl | (Left z) impossible
  splitMiddle_lem1 {y = y} {x = x} {xs = xs} {ys = ys} {pl = pl} Refl | (Right Here) = splitMiddle_lem2 prpr

splitMiddle : Right Here = listSplit xs (y::ys) loc ->
              elemAppend xs (y::ys) Here = loc

splitMiddle {xs = []} prf = rightInjective prf
splitMiddle {xs = (x :: xs)} {loc = Here} Refl impossible
splitMiddle {xs = (x :: xs)} {loc = (There y)} prf = cong $ splitMiddle_lem1 prf

splitRight_lem1 : Right (There pl) = listSplit (q :: xs) (y :: ys) (There z) ->
                  Right (There pl) = listSplit xs (y :: ys) z

splitRight_lem1 {xs} {ys} {y} {z} prf with (listSplit xs (y :: ys) z)
  splitRight_lem1 {xs = xs} {ys = ys} {y = y} {z = z} Refl | (Left x) impossible
  splitRight_lem1 {xs = xs} {ys = ys} {y = y} {z = z} prf | (Right x) =
    cong $ rightInjective prf  -- Type dance: take the Right off and put it back on.

splitRight : Right (There pl) = listSplit xs (y :: ys) loc ->
             elemAppend xs (y :: ys) (There pl) = loc
splitRight {pl = pl} {xs = []} {y = y} {ys = ys} {loc = loc} prf = rightInjective prf
splitRight {pl = pl} {xs = (x :: xs)} {y = y} {ys = ys} {loc = Here} Refl impossible
splitRight {pl = pl} {xs = (x :: xs)} {y = y} {ys = ys} {loc = (There z)} prf =
  let rec = splitRight {pl} {xs} {y} {ys} {loc = z} in cong $ rec (splitRight_lem1 prf)

木とその順不同走査の対応

これらの恐ろしい補題は、順序通りのトラバーサルに関する次の定理につながります。これらの定理は、ツリー内の特定の要素を見つける方法と、その要素を順序通りのトラバーサルで見つける方法との間の 1 対 1 の対応を示しています。

---------------------------
-- tThenInorder is a bijection from ways to find a particular element in a tree
-- and ways to find that element in its inorder traversal. `inorderToFro`
-- and `inorderFroTo` together demonstrate this by showing that `inorderThenT` is
-- its inverse.

||| `tThenInorder t` is a retraction of `inorderThenT t`
inorderFroTo : {x : a} -> (t : Tree a) -> (loc : x `Elem` inorder t) -> tThenInorder t (inorderThenT t loc) = loc
inorderFroTo Tip loc = absurd loc
inorderFroTo (Node l v r) loc with (listSplit (inorder l) (v :: inorder r) loc) proof prf
  inorderFroTo (Node l v r) loc | (Left here) =
    rewrite inorderFroTo l here in splitLeft _ _ loc prf
  inorderFroTo (Node l v r) loc | (Right Here) = splitMiddle prf
  inorderFroTo (Node l v r) loc | (Right (There x)) =
    rewrite inorderFroTo r x in splitRight prf

||| `inorderThenT t` is a retraction of `tThenInorder t`
inorderToFro : {x : a} -> (t : Tree a) -> (loc : x `InTree` t) -> inorderThenT t (tThenInorder t loc) = loc
inorderToFro (Node l v r) (OnLeft xInL) =
  rewrite unsplitLeft {ys = v :: inorder r} (tThenInorder l xInL)
  in cong $ inorderToFro _ xInL
inorderToFro (Node l x r) AtRoot =
  rewrite unsplitRight {x} {xs = inorder l} {ys = x :: inorder r} (tThenInorder (Node Tip x r) AtRoot)
  in Refl
inorderToFro {x} (Node l v r) (OnRight xInR) =
  rewrite unsplitRight {x} {xs = inorder l} {ys = v :: inorder r} (tThenInorder (Node Tip v r) (OnRight xInR))
  in cong $ inorderToFro _ xInR

ツリーとその事前順トラバーサルの対応

これらの同じ補題の多くを使用して、事前順序トラバーサルの対応する定理を証明できます。

preorder : Tree a -> List a
preorder Tip = []
preorder (Node l v r) = v :: (preorder l ++ preorder r)

tThenPreorder : (t : Tree a) -> x `InTree` t -> x `Elem` preorder t
tThenPreorder Tip AtRoot impossible
tThenPreorder (Node l x r) AtRoot = Here
tThenPreorder (Node l v r) (OnLeft loc) = appendElem _ _ (There (tThenPreorder _ loc))
tThenPreorder (Node l v r) (OnRight loc) = elemAppend (v :: preorder l) (preorder r) (tThenPreorder _ loc)

mutual
  preorderThenT : (t : Tree a) -> x `Elem` preorder t -> x `InTree` t
  preorderThenT {x = x} (Node l x r) Here = AtRoot
  preorderThenT {x = x} (Node l v r) (There y) = preorderThenT_lem (listSplit _ _ y)

  preorderThenT_lem : Either (x `Elem` preorder l) (x `Elem` preorder r) -> x `InTree` (Node l v r)
  preorderThenT_lem {x = x} {l = l} {v = v} {r = r} (Left lloc) = OnLeft (preorderThenT l lloc)
  preorderThenT_lem {x = x} {l = l} {v = v} {r = r} (Right rloc) = OnRight (preorderThenT r rloc)

splitty : Right pl = listSplit xs ys loc -> elemAppend xs ys pl = loc
splitty {pl = Here} {xs = xs} {ys = (x :: zs)} {loc = loc} prf = splitMiddle prf
splitty {pl = (There x)} {xs = xs} {ys = (y :: zs)} {loc = loc} prf = splitRight prf

preorderFroTo : {x : a} -> (t : Tree a) -> (loc : x `Elem` preorder t) ->
                tThenPreorder t (preorderThenT t loc) = loc
preorderFroTo Tip Here impossible
preorderFroTo (Node l x r) Here = Refl
preorderFroTo (Node l v r) (There loc) with (listSplit (preorder l) (preorder r) loc) proof spl
  preorderFroTo (Node l v r) (There loc) | (Left pl) =
    rewrite sym (splitLeft {e=pl} (preorder l) (preorder r) loc spl)
    in cong {f = There} $ cong {f = appendElem (preorder l) (preorder r)} (preorderFroTo _ _)
  preorderFroTo (Node l v r) (There loc) | (Right pl) =
      rewrite preorderFroTo r pl in cong {f = There} (splitty spl)

preorderToFro : {x : a} -> (t : Tree a) -> (loc : x `InTree` t) -> preorderThenT t (tThenPreorder t loc) = loc
preorderToFro (Node l x r) AtRoot = Refl
preorderToFro (Node l v r) (OnLeft loc) =
  rewrite unsplitLeft {ys = preorder r} (tThenPreorder l loc)
  in cong {f = OnLeft} (preorderToFro l loc)
preorderToFro (Node l v r) (OnRight loc) =
  rewrite unsplitRight {xs = preorder l} (tThenPreorder r loc)
  in cong {f = OnRight} (preorderToFro r loc)

ここまでいい?それを聞いてうれしい。あなたが求めている定理が近づいています!まず、ツリーが「単射」であるという概念が必要です。これは、このコンテキストでは「重複がない」という最も単純な概念だと思います。この概念が気に入らなくても心配しないでください。道を南下したところにもう 1 つあります。これは、とが で値を見つける方法でtある場合、木は単射であると言っています。loc1loc1xtloc1loc2

InjTree : Tree a -> Type
InjTree t = (x : a) -> (loc1, loc2 : x `InTree` t) -> loc1 = loc2

また、リストについても対応する概念が必要です。これは、木が単射である場合に限り、トラバーサルが単射であることを証明するためです。それらの証明はすぐ下にあり、前から続いています。

InjList : List a -> Type
InjList xs = (x : a) -> (loc1, loc2 : x `Elem` xs) -> loc1 = loc2

||| If a tree is injective, so is its preorder traversal
treePreInj : (t : Tree a) -> InjTree t -> InjList (preorder t)
treePreInj {a} t it x loc1 loc2 =
  let foo = preorderThenT {a} {x} t loc1
      bar = preorderThenT {a} {x} t loc2
      baz = it x foo bar
  in rewrite sym $ preorderFroTo t loc1
  in rewrite sym $ preorderFroTo t loc2
  in cong baz

||| If a tree is injective, so is its inorder traversal
treeInInj : (t : Tree a) -> InjTree t -> InjList (inorder t)
treeInInj {a} t it x loc1 loc2 =
  let foo = inorderThenT {a} {x} t loc1
      bar = inorderThenT {a} {x} t loc2
      baz = it x foo bar
  in rewrite sym $ inorderFroTo t loc1
  in rewrite sym $ inorderFroTo t loc2
  in cong baz

||| If a tree's preorder traversal is injective, so is the tree.
injPreTree : (t : Tree a) -> InjList (preorder t) -> InjTree t
injPreTree {a} t il x loc1 loc2 =
  let
    foo = tThenPreorder {a} {x} t loc1
    bar = tThenPreorder {a} {x} t loc2
    baz = il x foo bar
  in rewrite sym $ preorderToFro t loc1
  in rewrite sym $ preorderToFro t loc2
  in cong baz

||| If a tree's inorder traversal is injective, so is the tree.
injInTree : (t : Tree a) -> InjList (inorder t) -> InjTree t
injInTree {a} t il x loc1 loc2 =
  let
    foo = tThenInorder {a} {x} t loc1
    bar = tThenInorder {a} {x} t loc2
    baz = il x foo bar
  in rewrite sym $ inorderToFro t loc1
  in rewrite sym $ inorderToFro t loc2
  in cong baz

もっと恐ろしい補題

headsSame : {x:a} -> {xs : List a} -> {y : a} -> {ys : List a} -> (x :: xs) = (y :: ys) -> x = y
headsSame Refl = Refl

tailsSame : {x:a} -> {xs : List a} -> {y : a} -> {ys : List a} -> (x :: xs) = (y :: ys) -> xs = ys
tailsSame Refl = Refl

appendLeftCancel : {xs,ys,ys' : List a} -> xs ++ ys = xs ++ ys' -> ys = ys'
appendLeftCancel {xs = []} prf = prf
appendLeftCancel {xs = (x :: xs)} prf = appendLeftCancel {xs} (tailsSame prf)

lengthDrop : (xs,ys : List a) -> drop (length xs) (xs ++ ys) = ys
lengthDrop [] ys = Refl
lengthDrop (x :: xs) ys = lengthDrop xs ys

lengthTake : (xs,ys : List a) -> take (length xs) (xs ++ ys) = xs
lengthTake [] ys = Refl
lengthTake (x :: xs) ys = cong $ lengthTake xs ys

appendRightCancel_lem : (xs,xs',ys : List a) -> xs ++ ys = xs' ++ ys -> length xs = length xs'
appendRightCancel_lem xs xs' ys eq =
  let foo = lengthAppend xs ys
      bar = replace {P = \b => length b = length xs + length ys} eq foo
      baz = trans (sym bar) $ lengthAppend xs' ys
  in plusRightCancel (length xs) (length xs') (length ys) baz

appendRightCancel : {xs,xs',ys : List a} -> xs ++ ys = xs' ++ ys -> xs = xs'
appendRightCancel {xs} {xs'} {ys} eq with (appendRightCancel_lem xs xs' ys eq)
  | lenEq = rewrite sym $ lengthTake xs ys
            in let foo : (take (length xs') (xs ++ ys) = xs') = rewrite eq in lengthTake xs' ys
            in rewrite lenEq in foo

listPartsEqLeft : {xs, xs', ys, ys' : List a} ->
                  length xs = length xs' ->
                  xs ++ ys = xs' ++ ys' ->
                  xs = xs'
listPartsEqLeft {xs} {xs'} {ys} {ys'} leneq appeq =
  rewrite sym $ lengthTake xs ys
  in rewrite leneq
  in rewrite appeq
  in lengthTake xs' ys'

listPartsEqRight : {xs, xs', ys, ys' : List a} ->
                   length xs = length xs' ->
                   xs ++ ys = xs' ++ ys' ->
                   ys = ys'
listPartsEqRight leneq appeq with (listPartsEqLeft leneq appeq)
  listPartsEqRight leneq appeq | Refl = appendLeftCancel appeq


thereInjective : There loc1 = There loc2 -> loc1 = loc2
thereInjective Refl = Refl

injTail : InjList (x :: xs) -> InjList xs
injTail {x} {xs} xxsInj v vloc1 vloc2 = thereInjective $
    xxsInj v (There vloc1) (There vloc2)

splitInorder_lem2 : ((loc1 : Elem v (v :: xs ++ v :: ysr)) ->
                     (loc2 : Elem v (v :: xs ++ v :: ysr)) -> loc1 = loc2) ->
                    Void
splitInorder_lem2 {v} {xs} {ysr} f =
  let
    loc2 = elemAppend {x=v} xs (v :: ysr) Here
  in (\Refl impossible) $ f Here (There loc2)

-- preorderLength and inorderLength could be proven using the bijections
-- between trees and their traversals, but it's much easier to just prove
-- them directly.

preorderLength : (t : Tree a) -> length (preorder t) = size t
preorderLength Tip = Refl
preorderLength (Node l v r) =
  rewrite sym (plusSuccRightSucc (size l) (size r))
  in cong {f=S} $
     rewrite sym $ preorderLength l
     in rewrite sym $ preorderLength r
     in lengthAppend _ _

inorderLength : (t : Tree a) -> length (inorder t) = size t
inorderLength Tip = Refl
inorderLength (Node l v r) =
  rewrite lengthAppend (inorder l) (v :: inorder r)
  in rewrite inorderLength l
  in rewrite inorderLength r in Refl

preInLength : (t : Tree a) -> length (preorder t) = length (inorder t)
preInLength t = trans (preorderLength t) (sym $ inorderLength t)


splitInorder_lem1 : (v : a) ->
                    (xsl, xsr, ysl, ysr : List a) ->
                    (xsInj : InjList (xsl ++ v :: xsr)) ->
                    (ysInj : InjList (ysl ++ v :: ysr)) ->
                    xsl ++ v :: xsr = ysl ++ v :: ysr ->
                    v `Elem` (xsl ++ v :: xsr) ->
                    v `Elem` (ysl ++ v :: ysr) ->
                    xsl = ysl
splitInorder_lem1 v [] xsr [] ysr xsInj ysInj eq locxs locys = Refl
splitInorder_lem1 v [] xsr (v :: ysl) ysr xsInj ysInj eq Here Here with (ysInj v Here (elemAppend (v :: ysl) (v :: ysr) Here))
  splitInorder_lem1 v [] xsr (v :: ysl) ysr xsInj ysInj eq Here Here | Refl impossible
splitInorder_lem1 v [] xsr (y :: ysl) ysr xsInj ysInj eq Here (There loc) with (headsSame eq)
  splitInorder_lem1 v [] xsr (v :: ysl) ysr xsInj ysInj eq Here (There loc) | Refl = absurd $ splitInorder_lem2 (ysInj v)
splitInorder_lem1 v [] xsr (x :: xs) ysr xsInj ysInj eq (There loc) locys with (headsSame eq)
  splitInorder_lem1 v [] xsr (v :: xs) ysr xsInj ysInj eq (There loc) locys | Refl = absurd $ splitInorder_lem2 (ysInj v)
splitInorder_lem1 v (v :: xs) xsr ysl ysr xsInj ysInj eq Here locys = absurd $ splitInorder_lem2 (xsInj v)
splitInorder_lem1 v (x :: xs) xsr [] ysr xsInj ysInj eq (There y) locys with (headsSame eq)
  splitInorder_lem1 v (v :: xs) xsr [] ysr xsInj ysInj eq (There y) locys | Refl = absurd $ splitInorder_lem2 (xsInj v)
splitInorder_lem1 v (x :: xs) xsr (z :: ys) ysr xsInj ysInj eq (There y) locys with (headsSame eq)
  splitInorder_lem1 v (v :: xs) xsr (_ :: ys) ysr xsInj ysInj eq (There y) Here | Refl = absurd $ splitInorder_lem2 (ysInj v)
  splitInorder_lem1 v (x :: xs) xsr (x :: ys) ysr xsInj ysInj eq (There y) (There z) | Refl = cong {f = ((::) x)} $
                           splitInorder_lem1 v xs xsr ys ysr (injTail xsInj) (injTail ysInj) (tailsSame eq) y z

splitInorder_lem3 : (v : a) ->
                    (xsl, xsr, ysl, ysr : List a) ->
                    (xsInj : InjList (xsl ++ v :: xsr)) ->
                    (ysInj : InjList (ysl ++ v :: ysr)) ->
                    xsl ++ v :: xsr = ysl ++ v :: ysr ->
                    v `Elem` (xsl ++ v :: xsr) ->
                    v `Elem` (ysl ++ v :: ysr) ->
                    xsr = ysr
splitInorder_lem3 v xsl xsr ysl ysr xsInj ysInj prf locxs locys with (splitInorder_lem1 v xsl xsr ysl ysr xsInj ysInj prf locxs locys)
  splitInorder_lem3 v xsl xsr xsl ysr xsInj ysInj prf locxs locys | Refl =
     tailsSame $ appendLeftCancel prf

単純な事実: 木が単射である場合、その左右の部分木も単射です。

injLeft : {l : Tree a} -> {v : a} -> {r : Tree a} ->
          InjTree (Node l v r) -> InjTree l
injLeft {l} {v} {r} injlvr x loc1 loc2 with (injlvr x (OnLeft loc1) (OnLeft loc2))
  injLeft {l = l} {v = v} {r = r} injlvr x loc1 loc1 | Refl = Refl

injRight : {l : Tree a} -> {v : a} -> {r : Tree a} ->
           InjTree (Node l v r) -> InjTree r
injRight {l} {v} {r} injlvr x loc1 loc2 with (injlvr x (OnRight loc1) (OnRight loc2))
  injRight {l} {v} {r} injlvr x loc1 loc1 | Refl = Refl

主な目的!

tおよびuが二分木でtあり、単射であり、かつtおよびuが同じ前順序および順序内トラバーサルを持つ場合、およびtu等しくなります。

travsDet : (t, u : Tree a) -> InjTree t -> preorder t = preorder u -> inorder t = inorder u -> t = u
-- The base case--both trees are empty
travsDet Tip Tip x prf prf1 = Refl
-- Impossible cases: only one tree is empty
travsDet Tip (Node l v r) x Refl prf1 impossible
travsDet (Node l v r) Tip x Refl prf1  impossible
-- The interesting case. `headsSame presame` proves
-- that the roots of the trees are equal.
travsDet (Node l v r) (Node t y u) lvrInj presame insame with (headsSame presame)
  travsDet (Node l v r) (Node t v u) lvrInj presame insame | Refl =
    let
      foo = elemAppend (inorder l) (v :: inorder r) Here
      bar = elemAppend (inorder t) (v :: inorder u) Here
      inlvrInj = treeInInj _ lvrInj
      intvuInj : (InjList (inorder (Node t v u))) = rewrite sym insame in inlvrInj
      inorderRightSame = splitInorder_lem3 v (inorder l) (inorder r) (inorder t) (inorder u) inlvrInj intvuInj insame foo bar
      preInL : (length (preorder l) = length (inorder l)) = preInLength l
      inorderLeftSame = splitInorder_lem1 v (inorder l) (inorder r) (inorder t) (inorder u) inlvrInj intvuInj insame foo bar
      inPreT : (length (inorder t) = length (preorder t)) = sym $ preInLength t
      preLenlt : (length (preorder l) = length (preorder t))
               = trans preInL (trans (cong inorderLeftSame) inPreT)
      presame' = tailsSame presame
      baz : (preorder l = preorder t) = listPartsEqLeft preLenlt presame'
      quux : (preorder r = preorder u) = listPartsEqRight preLenlt presame'
-- Putting together the lemmas, we see that the
-- left and right subtrees are equal
      recleft = travsDet l t (injLeft lvrInj) baz inorderLeftSame
      recright = travsDet r u (injRight lvrInj) quux inorderRightSame
    in rewrite recleft in rewrite recright in Refl

「重複なし」の代替概念

ツリー内の 2 つの場所が等しくない場合は常に、同じ要素を保持していないということになる場合、ツリーに「重複がない」と言いたい場合があります。NoDupsこれは、型を使用して表現できます。

NoDups : Tree a -> Type
NoDups {a} t = (x, y : a) ->
               (loc1 : x `InTree` t) ->
               (loc2 : y `InTree` t) ->
               Not (loc1 = loc2) ->
               Not (x = y)

これが必要なことを証明するのに十分強い理由は、ツリー内の 2 つのパスが等しいかどうかを判断する手順があるためです。

instance DecEq (x `InTree` t) where
  decEq AtRoot AtRoot = Yes Refl
  decEq AtRoot (OnLeft x) = No (\Refl impossible)
  decEq AtRoot (OnRight x) = No (\Refl impossible)
  decEq (OnLeft x) AtRoot = No (\Refl impossible)
  decEq (OnLeft x) (OnLeft y) with (decEq x y)
    decEq (OnLeft x) (OnLeft x) | (Yes Refl) = Yes Refl
    decEq (OnLeft x) (OnLeft y) | (No contra) = No (contra . onLeftInjective)
  decEq (OnLeft x) (OnRight y) = No (\Refl impossible)
  decEq (OnRight x) AtRoot = No (\Refl impossible)
  decEq (OnRight x) (OnLeft y) = No (\Refl impossible)
  decEq (OnRight x) (OnRight y) with (decEq x y)
    decEq (OnRight x) (OnRight x) | (Yes Refl) = Yes Refl
    decEq (OnRight x) (OnRight y) | (No contra) = No (contra . onRightInjective)

Nodups tこれは、次のことを意味することを証明しInjTree tます。

noDupsInj : (t : Tree a) -> NoDups t -> InjTree t
noDupsInj t nd x loc1 loc2 with (decEq loc1 loc2)
  noDupsInj t nd x loc1 loc2 | (Yes prf) = prf
  noDupsInj t nd x loc1 loc2 | (No contra) = absurd $ nd x x loc1 loc2 contra Refl

最後に、すぐにNoDups t仕事が完了します。

travsDet2 : (t, u : Tree a) -> NoDups t -> preorder t = preorder u -> inorder t = inorder u -> t = u
travsDet2 t u ndt = travsDet t u (noDupsInj t ndt)
于 2015-06-01T05:33:14.807 に答える
2

インタビュアーに尋ねたであろう質問の 1 つは、繰り返される要素に関するものです。2 つの「異なる」二分木は、繰り返し要素がある場合、同じ順序順走査と順序順走査を行うことができます。

例として、次のケースを考えてみましょう。

順序: {12, 12} 事前注文: {12, 12}

       12           12 

    /                  \

 12                     12

ユニークな要素がある場合に来ています。問題に再帰的にアプローチする場合、いつでもより大きなセットを 3 のタプルに分割できます。{Left,Root,Right}のように順不同のトラバーサルがあり、{Root, Left , Right}のようにトラバーサルを事前順序付けするとします。

preorder traversalから Root を固定する場合、preorder traversalの残りは、inorder traversal からさらに詳細を取得できる 2 つのサブパートと見なす必要があります。各段階で、標準の 3 ノード問題を解決しようとすることに注意してください。後でそのポイントに到達することがわかっているため、各ノードにいくつの「サブ問題」があるかはあまり気にしない場合があります。

于 2015-05-31T11:17:40.053 に答える