13

私はどのようにinorder + preorderが一意のバイナリツリーを構築するのかを見ていましたか? Idris で正式な証明を書くのは楽しいだろうと考えました。残念ながら、ツリー内の要素を検索する方法が、順序通りに検索する方法に対応していることを証明しようとして、かなり早い段階で行き詰まってしまいました (もちろん、事前順序検索でもそれを行う必要があります)。 . どんなアイデアでも大歓迎です。私は完全な解決策には特に関心がありません。それ以上のことは、正しい方向への出発点に役立つだけです。

与えられた

data Tree a = Tip
            | Node (Tree a) a (Tree a)

少なくとも 2 つの方法でリストに変換できます。

inorder : Tree a -> List a
inorder Tip = []
inorder (Node l v r) = inorder l ++ [v] ++ inorder r

また

foldrTree : (a -> b -> b) -> b -> Tree a -> b
foldrTree c n Tip = n
foldrTree c n (Node l v r) = foldr c (v `c` foldrTree c n r) l
inorder = foldrTree (::) []

2 番目のアプローチはほとんどすべてを困難にするように思われるため、私の努力のほとんどは最初のアプローチに集中しています。ツリー内の場所を次のように説明します。

data InTree : a -> Tree a -> Type where
  AtRoot : x `InTree` Node l x r
  OnLeft : x `InTree` l -> x `InTree` Node l v r
  OnRight : x `InTree` r -> x `InTree` Node l v r

inorder( の最初の定義を使用して)書くのはとても簡単です

inTreeThenInorder : {x : a} -> (t : Tree a) -> x `InTree` t -> x `Elem` inorder t

結果はかなり単純な構造になり、証明にはかなり適しているようです。

のバージョンを書くこともそれほど難しくありません。

inorderThenInTree : x `Elem` inorder t -> x `InTree` t

inorderThenInTree残念ながら、これまでのところ、の逆であることを証明できた のバージョンを書く方法を思いつきませんでしinTreeThenInorderた。私が思いついた唯一の用途

listSplit : x `Elem` xs ++ ys -> Either (x `Elem` xs) (x `Elem` ys)

私はそこを通り抜けようとしてトラブルに遭遇します。

私が試したいくつかの一般的なアイデア:

  1. Vect代わりにを使用Listすると、左側にあるものと右側にあるものを理解しやすくなります。その「緑のスライム」にはまってしまいました。

  2. 木の根元での回転が十分に根拠のある関係につながることを証明するまで、木の回転をいじってみました。(これらの回転について何かを使用する方法を理解できなかったため、以下の回転をいじりませんでした)。

  3. ツリー ノードに到達する方法に関する情報でツリー ノードを装飾しようとしています。そのアプローチで何か面白いものを表現する方法が思いつかなかったので、私はこれにあまり時間をかけませんでした。

  4. そうする関数を構築しながら、開始した場所に戻るという証拠を構築しようとしています。これはかなり厄介になり、どこかで行き詰まりました。

4

3 に答える 3

8
于 2015-06-03T16:32:26.557 に答える
3

ツリーの場所からリストの場所に移動し、glguy's answerで参照されている補題のタイプを読み取って戻ることが可能であることを証明する方法を見つけることができました。コード(以下)はかなりひどいものですが、最終的には別の方法にも進むことができました。幸いなことに、私は恐ろしいリストのレンマを再利用して、先行順序探索に関する対応する定理を証明することもできました。

module PreIn
import Data.List
%default total

data Tree : Type -> Type where
  Tip : Tree a
  Node : (l : Tree a) -> (v : a) -> (r : Tree a) -> Tree a
%name Tree t, u

data InTree : a -> Tree a -> Type where
  AtRoot : x `InTree` (Node l x r)
  OnLeft : x `InTree` l -> x `InTree` (Node l v r)
  OnRight : x `InTree` r -> x `InTree` (Node l v r)

onLeftInjective : OnLeft p = OnLeft q -> p = q
onLeftInjective Refl = Refl

onRightInjective : OnRight p = OnRight q -> p = q
onRightInjective Refl = Refl

noDups : Tree a -> Type
noDups t = (x : a) -> (here, there : x `InTree` t) -> here = there

noDupsList : List a -> Type
noDupsList xs = (x : a) -> (here, there : x `Elem` xs) -> here = there

inorder : Tree a -> List a
inorder Tip = []
inorder (Node l v r) = inorder l ++ [v] ++ inorder r

rotateInorder : (ll : Tree a) ->
                (vl : a) ->
                (rl : Tree a) ->
                (v : a) ->
                (r : Tree a) ->
                inorder (Node (Node ll vl rl) v r) = inorder (Node ll vl (Node rl v r))
rotateInorder ll vl rl v r =
   rewrite appendAssociative (vl :: inorder rl) [v] (inorder r)
   in rewrite sym $ appendAssociative (inorder rl) [v] (inorder r)
   in rewrite appendAssociative (inorder ll) (vl :: inorder rl) (v :: inorder r)
   in Refl


instance Uninhabited (Here = There y) where
  uninhabited Refl impossible

instance Uninhabited (x `InTree` Tip) where
  uninhabited AtRoot impossible

elemAppend : {x : a} -> (ys,xs : List a) -> x `Elem` xs -> x `Elem` (ys ++ xs)
elemAppend [] xs xInxs = xInxs
elemAppend (y :: ys) xs xInxs = There (elemAppend ys xs xInxs)

appendElem : {x : a} -> (xs,ys : List a) -> x `Elem` xs -> x `Elem` (xs ++ ys)
appendElem (x :: zs) ys Here = Here
appendElem (y :: zs) ys (There pr) = There (appendElem zs ys pr)

tThenInorder : {x : a} -> (t : Tree a) -> x `InTree` t -> x `Elem` inorder t
tThenInorder (Node l x r) AtRoot = elemAppend _ _ Here
tThenInorder (Node l v r) (OnLeft pr) = appendElem _ _ (tThenInorder _ pr)
tThenInorder (Node l v r) (OnRight pr) = elemAppend _ _ (There (tThenInorder _ pr))

listSplit_lem : (x,z : a) -> (xs,ys:List a) -> Either (x `Elem` xs) (x `Elem` ys)
  -> Either (x `Elem` (z :: xs)) (x `Elem` ys)
listSplit_lem x z xs ys (Left prf) = Left (There prf)
listSplit_lem x z xs ys (Right prf) = Right prf


listSplit : {x : a} -> (xs,ys : List a) -> x `Elem` (xs ++ ys) -> Either (x `Elem` xs) (x `Elem` ys)
listSplit [] ys xelem = Right xelem
listSplit (z :: xs) ys Here = Left Here
listSplit {x} (z :: xs) ys (There pr) = listSplit_lem x z xs ys (listSplit xs ys pr)

mutual
  inorderThenT : {x : a} -> (t : Tree a) -> x `Elem` inorder t -> InTree x t
  inorderThenT Tip xInL = absurd xInL
  inorderThenT {x} (Node l v r) xInL = inorderThenT_lem x l v r xInL (listSplit (inorder l) (v :: inorder r) xInL)

  inorderThenT_lem : (x : a) ->
                     (l : Tree a) -> (v : a) -> (r : Tree a) ->
                     x `Elem` inorder (Node l v r) ->
                     Either (x `Elem` inorder l) (x `Elem` (v :: inorder r)) ->
                     InTree x (Node l v r)
  inorderThenT_lem x l v r xInL (Left locl) = OnLeft (inorderThenT l locl)
  inorderThenT_lem x l x r xInL (Right Here) = AtRoot
  inorderThenT_lem x l v r xInL (Right (There locr)) = OnRight (inorderThenT r locr)

unsplitRight : {x : a} -> (e : x `Elem` ys) -> listSplit xs ys (elemAppend xs ys e) = Right e
unsplitRight {xs = []} e = Refl
unsplitRight {xs = (x :: xs)} e = rewrite unsplitRight {xs} e in Refl

unsplitLeft : {x : a} -> (e : x `Elem` xs) -> listSplit xs ys (appendElem xs ys e) = Left e
unsplitLeft {xs = []} Here impossible
unsplitLeft {xs = (x :: xs)} Here = Refl
unsplitLeft {xs = (x :: xs)} {ys} (There pr) =
  rewrite unsplitLeft {xs} {ys} pr in Refl

splitLeft_lem1 : (Left (There w) = listSplit_lem x y xs ys (listSplit xs ys z)) ->
                 (Left w = listSplit xs ys z) 

splitLeft_lem1 {w} {xs} {ys} {z} prf with (listSplit xs ys z)
  splitLeft_lem1 {w}  Refl | (Left w) = Refl
  splitLeft_lem1 {w}  Refl | (Right s) impossible

splitLeft_lem2 : Left Here = listSplit_lem x x xs ys (listSplit xs ys z) -> Void
splitLeft_lem2 {x} {xs} {ys} {z} prf with (listSplit xs ys z)
  splitLeft_lem2 {x = x} {xs = xs} {ys = ys} {z = z} Refl | (Left y) impossible
  splitLeft_lem2 {x = x} {xs = xs} {ys = ys} {z = z} Refl | (Right y) impossible

splitLeft : {x : a} -> (xs,ys : List a) ->
            (loc : x `Elem` (xs ++ ys)) ->
            Left e = listSplit {x} xs ys loc ->
            appendElem {x} xs ys e = loc
splitLeft {e} [] ys loc prf = absurd e
splitLeft (x :: xs) ys Here prf = rewrite leftInjective prf in Refl
splitLeft {e = Here} (x :: xs) ys (There z) prf = absurd (splitLeft_lem2 prf)
splitLeft {e = (There w)} (y :: xs) ys (There z) prf =
  cong $ splitLeft xs ys z (splitLeft_lem1 prf)

splitMiddle_lem3 : Right Here = listSplit_lem y x xs (y :: ys) (listSplit xs (y :: ys) z) ->
                   Right Here = listSplit xs (y :: ys) z

splitMiddle_lem3 {y} {x} {xs} {ys} {z} prf with (listSplit xs (y :: ys) z)
  splitMiddle_lem3 {y = y} {x = x} {xs = xs} {ys = ys} {z = z} Refl | (Left w) impossible
  splitMiddle_lem3 {y = y} {x = x} {xs = xs} {ys = ys} {z = z} prf | (Right w) =
    cong $ rightInjective prf  -- This funny dance strips the Rights off and then puts them
                               -- back on so as to change type.


splitMiddle_lem2 : Right Here = listSplit xs (y :: ys) pl ->
                   elemAppend xs (y :: ys) Here = pl

splitMiddle_lem2 {xs} {y} {ys} {pl} prf with (listSplit xs (y :: ys) pl) proof prpr
  splitMiddle_lem2 {xs = xs} {y = y} {ys = ys} {pl = pl} Refl | (Left loc) impossible
  splitMiddle_lem2 {xs = []} {y = y} {ys = ys} {pl = pl} Refl | (Right Here) = rightInjective prpr
  splitMiddle_lem2 {xs = (x :: xs)} {y = x} {ys = ys} {pl = Here} prf | (Right Here) = (\Refl impossible) prpr
  splitMiddle_lem2 {xs = (x :: xs)} {y = y} {ys = ys} {pl = (There z)} prf | (Right Here) =
    cong $ splitMiddle_lem2 {xs} {y} {ys} {pl = z} (splitMiddle_lem3 prpr)

splitMiddle_lem1 : Right Here = listSplit_lem y x xs (y :: ys) (listSplit xs (y :: ys) pl) ->
                   elemAppend xs (y :: ys) Here = pl

splitMiddle_lem1 {y} {x} {xs} {ys} {pl} prf with (listSplit xs (y :: ys) pl) proof prpr
  splitMiddle_lem1 {y = y} {x = x} {xs = xs} {ys = ys} {pl = pl} Refl | (Left z) impossible
  splitMiddle_lem1 {y = y} {x = x} {xs = xs} {ys = ys} {pl = pl} Refl | (Right Here) = splitMiddle_lem2 prpr

splitMiddle : Right Here = listSplit xs (y::ys) loc ->
              elemAppend xs (y::ys) Here = loc

splitMiddle {xs = []} prf = rightInjective prf
splitMiddle {xs = (x :: xs)} {loc = Here} Refl impossible
splitMiddle {xs = (x :: xs)} {loc = (There y)} prf = cong $ splitMiddle_lem1 prf

splitRight_lem1 : Right (There pl) = listSplit (q :: xs) (y :: ys) (There z) ->
                  Right (There pl) = listSplit xs (y :: ys) z

splitRight_lem1 {xs} {ys} {y} {z} prf with (listSplit xs (y :: ys) z)
  splitRight_lem1 {xs = xs} {ys = ys} {y = y} {z = z} Refl | (Left x) impossible
  splitRight_lem1 {xs = xs} {ys = ys} {y = y} {z = z} prf | (Right x) =
    cong $ rightInjective prf  -- Type dance: take the Right off and put it back on.

splitRight : Right (There pl) = listSplit xs (y :: ys) loc ->
             elemAppend xs (y :: ys) (There pl) = loc
splitRight {pl = pl} {xs = []} {y = y} {ys = ys} {loc = loc} prf = rightInjective prf
splitRight {pl = pl} {xs = (x :: xs)} {y = y} {ys = ys} {loc = Here} Refl impossible
splitRight {pl = pl} {xs = (x :: xs)} {y = y} {ys = ys} {loc = (There z)} prf =
  let rec = splitRight {pl} {xs} {y} {ys} {loc = z} in cong $ rec (splitRight_lem1 prf)


---------------------------
-- tThenInorder is a bijection from ways to find a particular element in a tree
-- and ways to find that element in its inorder traversal. `inorderToFro`
-- and `inorderFroTo` together demonstrate this by showing that `inorderThenT` is
-- its inverse.

||| `tThenInorder t` is a retraction of `inorderThenT t`
inorderFroTo : {x : a} -> (t : Tree a) -> (loc : x `Elem` inorder t) -> tThenInorder t (inorderThenT t loc) = loc
inorderFroTo Tip loc = absurd loc
inorderFroTo (Node l v r) loc with (listSplit (inorder l) (v :: inorder r) loc) proof prf
  inorderFroTo (Node l v r) loc | (Left here) =
    rewrite inorderFroTo l here in splitLeft _ _ loc prf
  inorderFroTo (Node l v r) loc | (Right Here) = splitMiddle prf
  inorderFroTo (Node l v r) loc | (Right (There x)) =
    rewrite inorderFroTo r x in splitRight prf

||| `inorderThenT t` is a retraction of `tThenInorder t`
inorderToFro : {x : a} -> (t : Tree a) -> (loc : x `InTree` t) -> inorderThenT t (tThenInorder t loc) = loc
inorderToFro (Node l v r) (OnLeft xInL) =
  rewrite unsplitLeft {ys = v :: inorder r} (tThenInorder l xInL)
  in cong $ inorderToFro _ xInL
inorderToFro (Node l x r) AtRoot =
  rewrite unsplitRight {x} {xs = inorder l} {ys = x :: inorder r} (tThenInorder (Node Tip x r) AtRoot)
  in Refl
inorderToFro {x} (Node l v r) (OnRight xInR) =
  rewrite unsplitRight {x} {xs = inorder l} {ys = v :: inorder r} (tThenInorder (Node Tip v r) (OnRight xInR))
  in cong $ inorderToFro _ xInR
于 2015-06-04T17:43:44.177 に答える