5

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenetから事前トレーニングされた GoogleNet を使用し、独自のデータ (〜 100k 画像、101 クラス) で微調整しました。1 日のトレーニングの後、上位 1 分類で 62%、上位 5 分類で 85% を達成し、このネットワークを使用していくつかの画像を予測しようとしました。

https://github.com/BVLC/caffe/blob/master/examples/classification.ipynbの例に従いました。

ここに私のPythonコードがあります:

import caffe
import numpy as np


caffe_root = './caffe'


MODEL_FILE = 'caffe/models/bvlc_googlenet/deploy.prototxt'
PRETRAINED = 'caffe/models/bvlc_googlenet/bvlc_googlenet_iter_200000.caffemodel'

caffe.set_mode_gpu()

net = caffe.Classifier(MODEL_FILE, PRETRAINED,
               mean=np.load('ilsvrc_2012_mean.npy').mean(1).mean(1),
               channel_swap=(2,1,0),
               raw_scale=255,
               image_dims=(224, 224))

def caffe_predict(path):
        input_image = caffe.io.load_image(path)
        print path
        print input_image
        prediction = net.predict([input_image])


        print prediction
        print "----------"

        print 'prediction shape:', prediction[0].shape
        print 'predicted class:', prediction[0].argmax()


        proba = prediction[0][prediction[0].argmax()]
        ind = prediction[0].argsort()[-5:][::-1] # top-5 predictions


        return prediction[0].argmax(), proba, ind

私の deploy.prototxt では、101 クラスを予測するためだけに最後のレイヤーを変更しました。

layer {
  name: "loss3/classifier"
  type: "InnerProduct"
  bottom: "pool5/7x7_s1"
  top: "loss3/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 101
    weight_filler {
      type: "xavier"
    }
    bias_filler {
      type: "constant"
      value: 0
    }
  }
}
layer {
  name: "prob"
  type: "Softmax"
  bottom: "loss3/classifier"
  top: "prob"
}

ソフトマックス出力の分布は次のとおりです。

[[ 0.01106235  0.00343131  0.00807581  0.01530041  0.01077161  0.0081002
   0.00989228  0.00972753  0.00429183  0.01377776  0.02028225  0.01209726
   0.01318955  0.00669979  0.00720005  0.00838189  0.00335461  0.01461464
   0.01485041  0.00543212  0.00400191  0.0084842   0.02134697  0.02500303
   0.00561895  0.00776423  0.02176422  0.00752334  0.0116104   0.01328687
   0.00517187  0.02234021  0.00727272  0.02380056  0.01210031  0.00582192
   0.00729601  0.00832637  0.00819836  0.00520551  0.00625274  0.00426603
   0.01210176  0.00571806  0.00646495  0.01589645  0.00642173  0.00805364
   0.00364388  0.01553882  0.01549598  0.01824486  0.00483241  0.01231962
   0.00545738  0.0101487   0.0040346   0.01066607  0.01328133  0.01027429
   0.01581303  0.01199994  0.00371804  0.01241552  0.00831448  0.00789811
   0.00456275  0.00504562  0.00424598  0.01309276  0.0079432   0.0140427
   0.00487625  0.02614347  0.00603372  0.00892296  0.00924052  0.00712763
   0.01101298  0.00716757  0.01019373  0.01234141  0.00905332  0.0040798
   0.00846442  0.00924353  0.00709366  0.01535406  0.00653238  0.01083806
   0.01168014  0.02076091  0.00542234  0.01246306  0.00704035  0.00529556
   0.00751443  0.00797437  0.00408798  0.00891858  0.00444583]]

意味のないランダム配布のようです。

助けやヒントをありがとう、よろしくお願いします、アレックス

4

2 に答える 2

2

解決策は非常に簡単です。デプロイ ファイルの最後のレイヤーの名前を変更するのを忘れただけです。

layer {
  name: "loss3/classifier"
  type: "InnerProduct"
  bottom: "pool5/7x7_s1"
  top: "loss3/classifier"
  param {
    lr_mult: 1
    decay_mult: 1
  }
于 2015-06-25T07:28:50.537 に答える